Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Фундаменты 
  • Мутации в зависимости от причины возникновения (спонтанные,индуцированные), значение, примеры. Мутагенные факторы. Канцерогенез. Факторы мутагенеза Мутагенные факторы мутагенез и канцерогенез

Мутации в зависимости от причины возникновения (спонтанные,индуцированные), значение, примеры. Мутагенные факторы. Канцерогенез. Факторы мутагенеза Мутагенные факторы мутагенез и канцерогенез

Спонтанные мутации.

Мутации, помимо качественных свойств, характеризует и способ

возникновения. Спонтанные (случайные) – мутации, возникающие при нормальных

условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов

(биологические, химические, физические). Спонтанные мутации возникают у

человека в соматических и генеративных тканях. Метод определения спонтанных

мутаций основан на том, что у детей появляется доминантный признак, хотя у

его родителей он отсутствует. Проведенное в Дании исследование показали,

что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый

же Холдейн рассчитал среднюю вероятность появления спонтанных мутаций,

которая оказалась равна 5*10-5 за поколение. Другой ученый Курт Браун

предложил прямой метод оценки таких мутаций, а именно: число мутаций

разделить на удвоенное количество обследованных индивидов.

Индуцированные мутации.

Индуцированный мутагенез – это искусственное получение мутаций с

помощью мутагенов различной природы. Впервые способность ионизирующих

излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым.

Затем, проводя обширные исследования, была установлена радиобиологическая

зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было

доказано, что частота мутаций увеличивается с увеличением дозы воздействия.

В конце сороковых годов открыли существование мощных химических мутагенов,

которые вызывали серьезные повреждения ДНК человека для целого ряда

вирусов. Одним из примеров воздействия мутагенов на человека может служить

эндомитоз – удвоение хромосом с последующим делением центромер, но без

расхождения хромосом.

Мутагены - химические и физические факторы, вызывающие наследственные изменения - мутации. Впервые искусственные мутации получены в 1925 году Г. А. Надсеном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия; в 1927 году Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей. Способность химических веществ вызывать мутации (действием иода на дрозофилы) открыта И. А. Рапопортом. У особей мух, развившихся из этих личинок, частота мутаций оказалась в несколько раз выше, чем у контрольных насекомых.

Мутагенами могут быть различные факторы, вызывающие изменения в структуре генов, структуре и количестве хромосом. По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные - все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицируют на физические, химические и биологические:

Физические мутагены.

Ионизирующее излучение;

Радиоактивный распад;

Ультрафиолетовое излучение;

Моделированное радиоизлучение и электромагнитные поля;

Чрезмерно высокая или низкая температура.

Химические мутагены.

Окислители и восстановители (нитраты, нитриты, активные формы кислорода);

Алкилирующие агенты (например, иодацетамид);

Пестициды (например гербициды, фунгициды);

Некоторые пищевые добавки (например, ароматические углеводороды, цикламаты);

Продукты переработки нефти;

Органические растворители;

Лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты).

К химическим мутагенам условно можно отнести и ряд вирусов (мутагенным фактором вирусов являются их нуклеиновые кислоты - ДНК или РНК).

Биологические мутагены.

Специфические последовательности ДНК - транспозоны;

Некоторые вирусы (вирус кори, краснухи, гриппа);

Продукты обмена веществ (продукты окисления липидов);

Антигены некоторых микроорганизмов.

Канцерогенез- сложный патофизиологический процесс зарождения и развития опухоли. Изучение процесса канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний. Канцерогенез - сложный многоэтапный процесс, ведущий к глубокой опухолевой реорганизации нормальных клеток организма. Из всех предложенных до ныне теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации, хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и в конце концов к возникновению опухоли. Генетический аппарат клеток обладает сложной системой контроля деления, роста и дифференцировки клеток. Изучены две регулирующие системы оказывающие кардинальное влияние на процесс клеточной пролиферации. Протоонкогены- это группа нормальных генов клетки, оказывающих стимулирующее влияние на процессы клеточного деления, посредством специфических продуктов их экспрессии. Превращение протоонкогена в онкоген (ген, определяющий опухолевые свойства клеток) является одним из механизмов возникновения опухолевых клеток. Это может произойти в результате мутации протоонкогена с изменением структуры специфического продукта экспрессии гена, либо же повышением уровня экспрессии протоонкогена при мутации его регулирующей последовательности (точечная мутация) или при переносе гена в активно транскрибируемую область хромосомы (хромосомные аберрации). На данный момент изучена канцерогенная активность протоонкогенов группы ras (HRAS, KRAS2). При различных онкологических заболеваниях регистрируется значительное повышение активности этих генов (рак поджелудочной железы, рак мочевого пузыря и т. д.). Также раскрыт патогенез лимфомы Беркитта, при которой активация протоонкогена MYC происходит в случае его переноса в область хромосом, где содержатся активно транскрибируемые гены иммуноглобулинов.

Функции генов-супрессоров противоположны функциям протоонкогенов. Гены-супрессоры оказывают тормозящее влияние на процессы клеточного деления и выхода из дифференцировки. Доказано, что в ряде случаев инактивация генов-супрессоров с исчезновением их антагонистического влияния по отношению к протоонкогенам ведет к развитию некоторых онкологических заболеваний. Так, потеря участка хромосомы, содержащего гены-супрессоры, ведет к развитию таких заболеваний, как ретинобластома, опухоль Вильмса и др.

Таким образом, система протоонкогенов и генов-супрессоров формирует сложный механизм контроля темпов клеточного деления, роста и дифференцировки. Нарушения этого механизма возможны как под влиянием факторов внешней среды, так и в связи с геномной нестабильностью - теория, предложенная Кристофом Лингауром и Бертом Фогельштейном. Питер Дюсберг из Калифорнийского университета в Беркли утверждает, что причиной опухолевой трансформации клетки может быть анеуплоидия (изменение числа хромосом или потеря их участков), являющаяся фактором повышенной нестабильности генома. По мнению некоторых ученых, ещё одной причиной возникновения опухолей мог бы быть врождённый или приобретённый дефект систем репарации клеточной ДНК. В здоровых клетках процесс репликации (удвоения) ДНК протекает с большой точностью благодаря функционированию специальной системы исправления пострепликационных ошибок. В геноме человека изучено, по крайней мере, 6 генов, участвующих в репарации ДНК. Повреждение этих генов влечёт за собой нарушение функции всей системы репарации, и, следовательно, значительное увеличение уровня пострепликационных ошибок, то есть мутаций.

Мутационная теория канцерогенеза - учение, согласно которому причиной возникновения злокачественных опухолей являются мутационные изменения генома клетки. В настоящее время эта теория является общепринятой. В подавляющем большинстве случаев злокачественные новообразования развиваются из одной опухолевой клетки, то есть имеют моноклональное происхождение. Согласно современным представлениям, мутации, которые в конце концов приводят к развитию опухоли, могут иметь место как в половых (около 5 % всех случаев), так и в соматических клетках.

Успехи современной генетики позволяют подойти к изучению состояния окружающей среды с позиций охраны наследственности, генофонда биосферы. Такому подходу уделяется специальное внимание в Программе ООН по окружающей среде (ЮНЕП), в деятельности Всемирной организации здравоохранения <ВОЗ) и ЮНЕСКО (в программе МАБ «Человек и биосфера», проект 12). По инициативе советских ученых было начато создание центра по генетическому мониторингу, в задачу которого входит и разработка доступных методов для оценки степени воздействия загрязнения окружающей среды на экосистемы и здоровье человека.

Между тем изменения в биосфере, преобразуемой человеком, порождают влияющие на ход генетических процессов неконтролируемые факторы. В числе их и мутационные эффекты, вызываемые загрязнением окружающей среды, приобретающим ныне все большие масштабы.

Основная опасность загрязнения окружающей среды мутагенами, как полагают генетики, заключается в том, что вновь возникающие мутации, не «переработанные» эволюционно, отрицательно повлияют на жизнеспособность любых организмов. И если поражение зародышевых клеток может привести к росту числа носителей мутантных генов и хромосом, то при повреждении генов соматических клеток возможно возрастание числа раковых заболеваний. Более того, существует глубокая связь различных на первый взгляд биологических эффектов.

В частности, мутагены окружающей среды влияют на величины рекомбинаций наследственных молекул, являющихся также источником наследственных изменений. Возможно и влияние на функционирование генов, что может быть причиной, например, тератологических отклонений (уродств), наконец, вероятны поражения ферментных систем, что изменяет различные физиологические особенности организма, вплоть до деятельности нервной системы, а следовательно, сказывается и на психике. Генетическая адаптация популяций человека к возрастающему загрязнению биосферы мутагенными факторами принципиально невозможна. Чтобы исключить или ослабить воздействие мутагенов, прежде всего необходимо оценить мутагенность различных загрязнений на высокочувствительных биологических тест-системах, в том числе и тех, которые могут поступить в биосферу, и если риск для человека доказан, то принимать меры для борьбы с ними.

Так возникает задача скрининга - просеивания загрязнений с целью выявления мутагенов и выработки специального законодательства для регулирования их поступления в окружающую среду. И таким образом, контроль генетических последствий загрязнения в комплексе содержит в себе две задачи: испытание на мутагенность факторов среды различной природы (скрининг) и мониторинг популяций. Применяется и цитогенетическая методика тестирования на культуре ткани растений, животных, лимфоцитах человека. Также и тест с использованием метода доминантных леталей (выявление мутаций, которые вызывают гибель эмбрионов на самых ранних стадиях развития) на млекопитающих, в особенности на мьи. ах. Наконец, используется и прямое тестирование мутаций в клетках млекопитающих и человека как в культуре ткани, так и in vivo.

К абиотическим факторам любой экосистемы относятся ионизирующее излучение и загрязняющие вещества. Токсичность и мутагенность среды - это два взаимосвязанных понятия. Одни и те же факторы среды могут оказывать и токсичное, и мутагенное действие. Токсичное действие проявляется вскоре после контакта с фактором, не более чем через месяц. Оно может выражаться в виде аллергии, ослабления иммунной системы, отравления, развития неврозов, возникновения неизвестных ранее патологий.

Гораздо чаще токсичность среды проявляется в виде устойчивых отклонений от нормального физиологического состояния организма у большого количества людей, которые заняты на вредном производстве или живут в прилегающих к предприятию районах.

Загрязняющие вещества чаще всего - это отходы производства и автомобильного транспорта: сернистый ангидрид, оксиды азота и углерода, углеводороды, соединения меди, цинка, ртути, свинца.

Загрязняющими веществами также могут быть химические соединения, созданные человеком, например пестициды, используемые для борьбы с вредителями сельскохозяйственных культур.

Мутагенность окружающей среды никогда не проявляется сразу после контакта с фактором. Опасность мутагенов для человека состоит в том, что их многократное и длительное контактное действие приводит к возникновению мутаций - стойких изменений в генетическом материале. С накоплением мутаций клетка приобретает способность к бесконечному делению и может стать основой развития онкологического заболевания (раковой опухоли).

Возникновение мутаций - процесс длительный и сложный, поскольку в клетках имеется надежная защитная система, которая противостоит мутационному процессу.

Развитие мутации зависит от дозы мутагена и длительности его действия, а также от того, насколько часто мутаген действует на организм, т.е. от ритма его действия. Процесс развития мутаций может быть растянут на годы.

На первом месте среди воздействий, вызывающих глубокие изменения генетического аппарата, стоит радиация. Наглядный пример мутагенного действия окружающей среды - развитие прогрессирующей лучевой болезни, которая заканчивается смертельным исходом у людей, по­лучивших высокую дозу радиации. Такие случаи встречаются редко. Обычно они обусловлены аварийными ситуациями, нарушением технологических процессов.

Радиационный распад, или явление радиоактивности, связан со способностью атомов отдельных химических элементов испускать частицы, несущие энергию. Основной характеристикой излучения, определяющей степень его воздействия на организм, является доза. Доза - это количество переданной организму энергии. Однако, при одинаковой поглощенной дозе, разные типы излучения могут иметь разный биологический эффект.

Под действием радиоактивного излучения в клетках происходит ионизация атомов и молекул, в том числе и молекул воды, что вызывает цепь каталитических реакций, приводящих к функциональным изменениям клеток. Наиболее радиочувствительны клетки постоянно обновляющихся органов и тканей: костного мозга, половых желез, селезенки. Изменения касаются механизмов деления, наследственного материала в составе хроматина и хромосом, регуляции процессов обновления и специализации клеток.

Радиация как мутагенный фактор вызывает повреждение генетического аппарата клеток: молекул ДНК, изменение кариотипа в целом. Мутации в соматических клетках облученного человека приводят к развитию лейкозов или других опухолей разных органов. Мутации в половых клетках проявляются в последующих поколениях: у детей и более отдаленных потомков человека, подвергшегося облучению. Генетические дефекты мало зависят от дозы и кратности облучения. Даже сверхмалые дозы радиации могут стимулировать мутации, иначе говоря, пороговая доза радиации отсутствует.

Опасность радиационного облучения связана с тем, что органы чувств человека не могут улавливать ни один из видов излучения. Установить факт радиоактивного заражения местности можно только приборами.

Радиационную опасность представляют старые захоронения, относящиеся к тому времени, когда радиационным проблемам еще не уделяли должного внимания. Опасные ситуации могут возникать при утилизации отработанного ядерного топлива от АЭС и атомных подводных лодок, при захоронении радиоактивных отходов, которые образовались после уничтожения ядерного оружия. Кроме того, радиоактивные отходы имеют множество промышленных предприятий, научных и медицинских учреждений

Радиация, связанная с развитием ядерной энергетики, составляет лишь малую долю, порождаемую деятельностью человека. Применение рентгеновских лучей в медицине, сжигание угля, длительное пребывание в хорошо герметизированных помещениях могут привести к значительному увеличению уровня облучения.

Избежать облучения ионизирующим излучением невозможно. Жизнь на Земле возникла и продолжает развиваться в условиях постоянного естественного облучения. Помимо техногенных радионуклидов свой вклад в радиационный фон Земли вносят космическое излучение и излучение от рассеянных в земной коре, воздухе и других объектах природных радиоактивных компонентов.

Мутагенными свойствами обладают не только различного типа излучения, но и многие химические соединения: естественные неорганические вещества (окислы азота, нитраты, соединения свинца), переработанные природные соединения (продукты сжигания угля, нефти, древесины, соединения тяжелых металлов), химические продукты, не встречающиеся в природе (пестициды, некоторые пищевые добавки, промышленные отходы, часть синтетических соединений).

Выраженным мутагенным действием в атмосфере городов обладают оксиды азота (III) и (V), которые при взаимодействии с атмосферной влагой образуют азотистую и азотную кислоты, а также выбросы дизельных двигателей; бензопирен, пыль асбеста, диоксины, - образующиеся при неконтролируемом сжигании твердых бытовых и промышленных отходов.

В составе гидросферы наиболее выраженным мутагенным действием обладают соли тяжелых металлов (никель, марганец) и пестициды.

В почве к числу химических мутагенов относятся соли тяжелых металлов и ме-таллорганических соединений, которыми почва загрязнена вдоль автомагистралей и в районах свалок мусора. Например, свинец - один из максимально опасных загрязнителей почв среди металлов. Он может накапливаться в организме человека, вызывая хронические отравления, проявляющиеся в истощении организма, нарушении работы почек, мышечной слабости, тяжелых расстройствах нервной и кровеносной систем. Употребление в пищу растений, грибов и ягод, собранных вблизи автомагистралей, может привести к пищевому отравлению свинцом, а через несколько лет эффект может проявиться в виде мутации.

В отличие от радиоактивного излучения химические мутагены оказывают действие только при непосредственном контакте с клетками организма. Они могут попасть на кожу, слизистые оболочки дыхательных путей, с продуктами питания оказываться в пищеварительной системе, а затем с питательными веществами перейти в кровь.


| | | | | 6 | | | | |
Прочитайте:
  1. E. Неявка на судебное заседание без уважительной причины.
  2. Адаптивный ответ, его неспецифичность. Примеры. Механизмы.
  3. Анатомия застенных желез тонкого отдела кишечника. Топография, назначение, видовые особенности у домашних животных и птиц. Иннервация, кровоснабжение, отток лимфы.
  4. Аномалии сократительной деятельности матки. Причины. Классификация. Методы диагностики.
  5. Аппендикулярный инфильтрат. Причины, клиника неосложненного и осложненного инфильтрата. Лечебно-диагностическая тактика. Методы лечения.
  6. Биотоки. Опыты Гальвани и Дюбуа-Реймона. Потенциал покоя и его природа. Мембранно-ионная теория Ю.Бернштейна. Условия и причины поляризации мембраны.
  7. Биоэлектрические процессы. Потенциал действия. Его основные части. Механизм возникновения (на примере ПД скелетной мускулатуры).
  8. В зависимости от этиологии развивается клиническая картина перитонита или внутреннего кровотечения.

Любые мутации могут возникнуть спонтанно или быть индуцированными. Спонтанные мутации появляются под влиянием неизвестных природных факторов и приводят к ошибкам при репликации ДНК. Индуцированные мутации возникают под воздействием специальных направленных факторов, повышающих мутационный процесс. Мутагенным действием обладают факторы физической, химической и биологической природы.

Мутагенные факторы среды - факторы , вызывающие появление мутаций .

Мутагенным действием обладают факторы физической, химической и биологической природы.

Среди физических мутагенов наиболее сильное мутантное действие оказывает ионизирующая радиация – рентгеновские лучи, α-, β-, γ-лучи. Обладая большой проникающей способностью, при действии на организм они вызывают образование свободных радикалов ОН или НО 2 из воды, находящейся в тканях. Эти радикалы обладают высокой реакционной способностью. Они могут расщеплять нуклеиновые кислоты и другие органические вещества.

Облучение вызывает как генные, так и хромосомные мутации. Ультрафиолетовое излучение характеризуется меньшей энергией, не вызывающей ионизацию тканей. Его действие приводит к образованию тимидиновых димеров. Присутствие их в ДНК обусловливает ошибки при ее репликации.

Химические мутагены должны обладать следующими качествами:

Высокой проникающей способностью;

Свойством изменять коллоидное состояние хромосом;

Определенным действием на состояние хромосомы или гена.

К химическим мутагенам можно отнести многие неорганические и органические соединения, например кислоты, щелочи, перекиси, соли металлов, формальдегид, пестициды, дефолианты, гербициды, колхицин и др.

Некоторые вещества способны усиливать мутационный эффект в сотни раз по сравнению со спонтанным. Их называют супермутагенами . К ним относят нитрозосоединения – иприт, диэтилнитрозамин, уретан и др.

Некоторые лекарственные препараты также обладают мутагенным эффектом, например, цитостатики, производные этиленимина, нитрозомочевина. Они повреждают ДНК в процессе репликации.

Известны также биологические факторы мутагенеза . Вирусы оспы, кори, ветряной оспы, эпидемического паротита, гепатита, краснухи и др. способны вызывать разрывы хромосом. Вирусы могут усиливать темпы мутации клеток хозяина за счет подавления активности репарационных систем. Есть данные о возрастании числа хромосомных перестроек в клетках человека после пандемий, вызванных вирулентными вирусами.

Канцерогене́з - сложный патофизиологический процесс зарождения и развития опухоли.

Процесс возникновения мутаций называют мутагенез, организмы, у которых произошли мутации, -- мутантами, а факторы среды, вызывающие появление мутаций, -- мутагенными. Способность к мутированию -- одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, как правило, связанной с изменениями во внешней среде.

МЕХАНИЗМЫ КАНЦЕРОГЕНЕЗА

Онкологические заболевания занимают второе место как причина смертности населения в экономически развитых странах, уступая только заболеваниям сердечно-сосудистой системы. В разных регионах земного шара число больных опухолями колеблется от 65 до 360 на 100 000 населения.

Опухоль - это избыточное, некоординируемое организмом, потенциально беспредельное разрастание ткани, состоящей из качественно измененных клеток, для которых характерны безудержная пролиферация, нарушение дифференцировки, морфологический, биохимический и функциональный атипизм.

Опухолевый процесс - это несбалансированный тканевый рост, избыточное размножение клеток, не отвечающее потребностям ткани и организма в целом.

В патологии встречаются и другие процессы, сопровождающиеся разрастанием ткани, но они существенно отличаются от истинного опухолевого роста. Так, одним из тканевых проявлений воспалительной реакции является пролиферация клеток. Но при воспалении пролиферируют клетки различного генеза: специфические клетки данной ткани, клетки соединительной ткани, сосудов, некоторые клетки крови. Рост же опухоли осуществляется за счет размножения клеток одного типа, являющихся потомками одной клетки, подвергшейся трансформации. Пролиферация клеток при воспалении не беспредельна, она регулируема, сопровождается клеточной дифференцировкой и продолжается до восполнения тканевого дефекта. В основе гиперплазии и регенерации также лежит размножение клеточных элементов одного типа, но и эта пролиферация не беспредельна, как в опухолях, и завершается созреванием клеток.

Таким образом, самой существенной особенностью опухолевой ткани является беспредельная пролиферация клеток с нарушением процесса их дифференцировки.

Классификация опухолей

Различают доброкачественные и злокачественные опухоли.

Это разделение основано на оценке внешних особенностей отдельных опухолевых клеток и опухоли в целом, их поведения, темпа и характера роста, влияния на организм.

Доброкачественные опухоли растут медленно, годами, тогда как злокачественные отличаются быстрым ростом и могут заметно эволюционировать в течение нескольких месяцев или даже недель. Доброкачественные опухоли, увеличиваясь в размере, отодвигают (раздвигают) окружающие ткани, при пальпации подвижны и имеют ровную поверхность.

Злокачественные опухоли обычно плотные, с бугристой поверхностью, прорастают соседние ткани, малоподвижны. Злокачественные новообразования, помимо выраженных изменений в соседних тканях, вызывают истощение организма, способны к распространению, образованию метастазов, рецидивам и без лечения завершаются летально.

Репарация наследственного материала

Антимутагенез - это воздействие на клетку и организм, которое блокирует или уменьшает вероятность возникновения мутаций. Устойчивость генетического материала обеспечивают антимутационные механизмы.

1. Естественные барьеры: диплоидный набор хромосом (парность хромосом), двойная спираль ДНК, избыточность (вырожденность) генетического кода, повтор некоторых генов.

2. Репарация структуры ДНК- это внутриклеточный процесс восстановления поврежденной молекулы ДНК. Повреждениями могут быть разрывы нитей ДНК, сшивание (соединение) нитей ДНК или ДНК - гистон, нарушения структуры азотистых оснований.

Репарация может происходить:

а) до удвоения молекулы ДНК (дорепликативная);

б) в процессе удвоения молекулы (репликативная) и в) после удвоения молекулы ДНК (пострепликативная).

В 1962г. К.Руперт описал фотореактивацию, или световую репарацию. Он установил, что при облучении ультрафиолетом фагов, бактерий и протистов резко снижается их жизнеспособность. Но если на них действовать видимым светом, жизнеспособность восстанавливается. При действии ультрафиолета в молекуле ДНК образуются димеры (химические связи между основаниями Т-Т одной цепочки). Это тормозит считывание информации. Видимый свет активирует ферменты, которые разрушают связи димеров.

Чаще встречается репарация темновая, или эксцизионная (описана А.Герреном в 50-е годы ХХ века). Она заключается в том, что ферменты находят и " вырезают" поврежденный участок нити ДНК и на его место вставляют синтезированный неизмененный участок.

В этих процессах участвуют четыре группы ферментов:

а) эндонуклеаза " узнает" поврежденный участок и рядом с ним разрывает нить ДНК;

б) экзонуклеаза удаляет поврежденный участок;

в) ДНК-полимераза по принципу комплементарности синтезирует фрагмент ДНК на месте разрушенного;

г) лигаза соединяет концы вставленного участка с основной нитью ДНК.

Нарушение процесса репарации может привести к развитию болезней, примерами которых являются пигментная ксеродерма и анемия Фанкони. При пигментной ксеродерме под действием солнечных лучей на коже появляются ожоги, развиваются язвы, ороговение эпидермиса, поражения глаз и появление раковых опухолей.

Анемия Фанкони связана с нарушением функций красного костного мозга, что приводит к снижению содержания форменных элементов крови и развитию гиперпигментации.

3. Наличие антимутагенов. Это вещества различной природы, которые в небольших концентрациях способны стабилизировать мутационный процесс. Примерами могут быть биологически активные соединения гистамин и серотонин, антиоксиданты, сульфаниламидные препараты, свежие овощные соки и некоторые другие. Наиболее эффективным антимутагеном является б- токоферол, который снижает число как генных, так и хромосомных мутаций. Чем больше токоферолов содержалось в растениях, тем больше была устойчивость их генетического аппарата к действию мутагенных факторов.

Биологические основы канцерогенеза (генетические концепции)

Канцерогенез - процесс образования и развития опухолей. Изменения происходят на молекулярно-генетическом уровне. В их основе лежат механизмы, которые контролируют рост, размножение и дифференцировку клеток.

В 1901г. впервые Г.де Фриз высказал предположение, что опухоль образуется в результате мутации в соматических клетках. Это - мутационная концепция канцерогенеза.

Основы вирусо-генетической концепции представлены в работах А.Борреля и Ф.Боска (1903г.). Они считали, что вирусы являются причиной лейкозов и саркомы кур. Л.А.Зильбер (1945г.) называл вирусы универсальной причиной злокачественного роста.

Мутагены и канцерогены активируют вирусы, их геном включается в ДНК клетки и изменяет ее свойства. Ю.М.Оленов (1967г.) и А.Ю.Броновицкий (1972г.) предложили эпигеномную концепцию.

Они считали, что в основе превращения нормальной клетки в опухолевую лежат нарушения структуры функциональных генов. Последней по времени является генная концепция - концепция протоонкогенов (Р.Хюбнер, 1969г.; Г.И.Абелев, 1975г.).

В составе ДНК любой клетки содержатся неактивные участки - протоонкогены. Они могут быть получены от родителей или внесены в клетку вирусом. Активируются протоонкогены при мутациях или при попадании в клетку промотора вируса и переходят в активную форму - онкогены. Нормальная клетка преобразуется в опухолевую клетку.

Генетика и проблема рака.

Достижения генетики и молекулярной биологии последних десятилетий оказали огромное влияние на понимание природы инициализации и прогрессии злокачественных образовании. Окончательно установлено, что рак представляет собой гетерогенную группу заболеваний, каждое из которых вызывается комплексом генетических нарушений, определяющих свойство неконтролируемого роста и способность к метастазированию. Эти современные знания открыли принципиально новые возможности в диагностике и лечении злокачественных новообразований.

Влияние конкретных генетических нарушений, лежащих в основе опухолевого роста, позволило обнаружить специфические молекулярные маркеры и разработать на их основе тесты ранней диагностики опухолей.

Известно, что неопластические трансформация клеток происходит в результате накопления наследуемых (герминативных) и приобретенных (соматических) мутаций в протоонкогенах или генах-супрессорах. Именно эти генетические нарушения с первую очередь могут быть использованы для обнаружения злокачественных клеток в клиническом материале.

Наиболее подходящим субстратом молекулярной диагностики является ДНК, т.к. она длительно сохраняется в образцах тканей и может быть легко размножена с помощью т.н. полимеразной цепной реакции (ПЦР). Это позволяет осуществлять диагностику даже при наличии минимального количества исследуемого материала.

Помимо определения мутаций в онкогенах и генах-супрессорах в диагностических целях используют изменения, выявляемые в повторяющихся последовательностях ДНК, т.н. микро сателлитах.

При сравнении парных образцов опухоли и нормальных тканей может быть выявлено выпадение одного из аллелей в опухоли (потеря гетерозиготности (ПГ), что отражает наличие хромосомных делеций, лежащих в основе инактивации генов-супрессоров.

Микросателлитная нестабильность (МН) особенно характерна для наследуемой формы неполипозного рака толстой кишки. Она, однако, обнаруживается при многих других видах опухолей и проявляется как в инактивации генов-супрессоров, так и в делециях анонимных некодирующих последовательностей ДНК.

В целом, обнаружение клинических образцах ПГ и/или МН указывает на присутствие клеток, несущих искаженную информацию, свойственную опухолевому росту. Мутации в онкогенах и генах-супрессорах обнаруживаются также при использовании в качестве исходного материала клеточной РНК, которую превращают в реакцию обратной транскрипции в комплиментарную (С)-ДНК и амплифицируют с помощью ПЦР. Данный метод (RT-ПЦР) широко применяют для выявления экспрессии генов в различных тканях.

Известно, что нормальные и опухолевые клетки различаются по экспрессии многих сотен генов, поэтому разработаны современные методы серийного анализа экспрессии, основанные на технологии микрочипов и позволяющие оценивать сотни и даже тысячи генов одновременно.

Одним из новых перспективных молекулярных маркеров опухоли является телоизомераза, рибонуклеопротеиновый фермент, наращивающий нуклеотидные последовательности на концах хромосом (теломерах) активность данного фермента постоянно присутствует в более чем 90% опухолей и практически не обнаруживается в нормальных тканях. Несм отря на несомненную перспективность и высокую точность методов молекулярной диагностики, вопрос об их специфичности и чувствительности сохраняет свою актуальность. Это связано с тем, что опухоли всегда состоят из смеси нормальных и злокачественных клеток, поэтому выделяемая из них ДНК также гетерогенна, что необходимо учитывать при решении вопроса о применимости молекулярных тестов.

Тем не менее, методики, базирующиеся на ПЦР, технологически исключительно чувствительны и способны обнаруживать специфические генетические нарушения задолго до формирования морфологически определяемой опухоли.

В настоящее время сформировалось несколько направлений использования молекулярных тестов в онкологии.

1) Раннее выявление опухолей наиболее часто основывается на определении мутаций ras и p53, обнаружение которых позволяет в некоторых случаях судить о стадии опухолевого процесса. Информативным ранним маркером рака толстой кишки служат мутации гена АРС, обнаруживаемые более чем в 70% аденом. Микросателлитные маркеры высоко эффективны в ранней диагностике рака мочевого пузыря и простаты. Широкий спектр опухолей может быть диагностирован с использованием протоколов активности телоизомеразы.

2) Метастазирование и распространенность опухоли также могут оцениваться с применением молекулярных тестов. Наиболее часто для этих целей используют RT-PCR метод выявления изменений экспрессии генов в опухолевых клетках.

3) Анализ цитологических и гистологических препаратов с помощью молекулярных тестов находит все более широкое применение. Примером может служить определение HPV вирусов при раке шейки матки, а также применение молекулярных тестов для выявления мутаций онкогенов непосредственно на гистологических срезах.

4) Промежуточные биомаркеры служат для выявления клональных и генетических изменений, позволяющих предсказать появление опухолей. Эти маркеры успешно используются для оценки эффективности онкопротекторов на популяционном уровне.

5) Генетическое тестирование онкологического риска стало возможным в связи с открытием генов предрасположенности к онкологическим заболеваниям, что оказалось особенно актуальным для оценки риска среди членов так зазываемых "высоко раковых" семей.

ДНК-тестирование успешно применяется при различных наследуемых опухолях: ретинобластоме, полипозе кишечника, множественных эндокринных опухолях второго типа вслед за клонированием генов предрасположенности к раку молочной железы и яичников.

Одна из существенных проблем, возникающих при диагностике семейной предрасположенности к РМЖ, касается социальных и психологических последствий выявления у пациентов данных мутаций.

Однако при правильной организации генетического консультирования и соблюдения этических норм и принципа конфиденциальности применения молекулярных тестов в группах риска, безусловно, полезно и необходимо.

В заключение следует подчеркнуть, что внедрение современных методов молекулярной диагностики в широкую онкологическую практику неизбежно потребует серьезного технического перевооружения существующих клинических лабораторий, а также специально подготовленного персонала. Сами методы диагностики при этом должны пройти масштабные клинические испытания с учетом принципов рандомизации.

Мутагенез – процесс образования мутаций. Факторы, вызывающие мутации – это мутагены. Мутагены воздействуют на генетический материал особи, вследствие чего может измениться фенотип.
Канцерогенез – процесс образования опухолей. Установлено, что при канцерогенезе изменения происходят на молекулярно-генетическом уровне и затрагивают механизмы, отвечающие за размножение, рост и дифференцировку клеток.

Классификации мутаций.

По причинам, вызвавшим мутации:

Спонтанные (самопроизвольные). Происходят по действием естественных мутагенных факторов без вмешательства человека.

Индуцированные. Результат направленного воздействия определенных мутагенных факторов.

По мутировавшим клеткам:

Генеративные. Происходят в половых клетках. Передаются по наследству.

Соматические. Происходят в соматических клетках. По наследству передаются только при вегетативном размножении.

По исходу для организма:

Летальные. Несовместимые с жизнью.

Полулетальные. Снижают жизнеспособность организма.

Нейтральные. Не влияют на процессы жизнедеятельности.

Положительные. Повышающие жизнеспособность. Возникают редко, но имеют большое значение для прогрессивной эволюции.

По изменениям генетического материала:

Геномные. Обусловлены изменениями числа хромосом. Обнаруживаются цитогенетическими методами. Всегда проявляются фенотипически.

Полиплоидия (кратное гаплоидному увеличение числа хромосом (3n, 4n, 5n), имеет большое значение для селекции., гаплоидия). У млекопитающих и человека – это летальные мутации

Гаплоидия (1n). Н-р, трутни у пчел. Жизнеспособность снижается. В данном случает проявляются все рецессивные гены. Для млекопитающих и человека мутация летальна.

Анеуплоидия. Некратное гаплоидному уменьшение или увеличение числа хромосом (2n+\-1). Разновидности:

Трисомия. 2n + 1. В генотипе 3 гомологичные хромосомы. Болезнь Дауна

Моносомия. В наборе одна из пары гомологичных хромосом. 2n – 1. Моносомия по первым крупным парам хромосом для человека летальна.

Нулесомия. Отсутствие пары хромосом. Летальная мутация.

Хромосомные (оберации). Обусловлены изменением структуры хромосом. Могут быть внутри и межхромосомными. Выявляются цитогенетичесмкими методами.

Внутрихромосные. Перестройки внтури хромосом

Межхромосомные. Происходят между негомологичными хромосомами. Транслакация, дубпликации.

Генные (точечковые, трансгенации). Связаны с изменениями структуры гена (молекулы ДНК). В большинстве случаев проявляются фенотипически. Являются причиной нарушения обмена веществ, генных болезеней. Частота проявления – 1-2%. Выявляются биохимическими методами и методами рекомбинантной ДНК.

Изменения структурных генов. Сдвиг рамки считывания. Приводит к миссенс-мутациям (изменению смысла кодонов и образованию других белков). Нонсенс-мутации – образование бессмысленных кодонов, не кодирующих аминокислоты.

Изменения функциональных генов.

Белок репрессор не подходит к гену-оператору. Структурные гены работают постоянно. Белки синтезируются все время

Белок-репрессор не снимается индуктором. Структурные гены постоянно не работают. Синтеза белка нет.

Нарушение чередований репрессий и индукций.

Лекция 7

Тема: Виды изменчивости и виды мутаций у человека. Факторы мутагенеза.

План лекции

1. Изменчивость и ее формы.

2. Мутагенные факторы и мутагенез.

3. Репарация наследственного материала.

4. Биологические основы канцерогенеза.

Изменчивость и ее формы

Изменчивость – это свойство живых организмов приобретать в процессе онтогенеза признаки, отличающие их от родителей.

Полученная от родителей генетическая информация определяет потенции (возможности) развития признаков. Реализация их зависит от определенных условий среды. Одинаковая генетическая информация в разных условиях может проявляться по-разному (пример: монозиготные близнецы, которые живут в разных условиях). Наследуется тип реакции на воздействия внешней среды, а не конкретный признак.

Степень фенотипического проявления данного гена называется экспрессивностью, а частота его проявления называется пенетрантностью. Пенетрантность выражается в процентах: отношение числа особей, имеющих данный признак, к числу особей, имеющих данный ген.

С изменчивостью связаны явления фенокопий и генокопий.

Генокопии – это одинаковые фенотипические проявления мутаций разных генов (пример: различные виды гемофилии, связанные с недостаточностью VIII-го и IX-го факторов свертывающей системы).

При фенокопиях измененный под действием внешних факторов признак копирует признаки другого генотипа (пример: прием алкоголя во время беременности приводит к комплексу нарушений, которые могут копировать симптомы болезни Дауна).

^ Модификационная изменчивость (или модификация) связана с изменением фенотипа, без изменения структуры генотипа. Поэтому она ненаследственная. Модификации происходят под действием факторов окружающей среды, изменения можно предсказать для целой группы особей.

Как правило, модификации имеют адаптивный (приспособительный) характер.

Формы изменчивости

Фенотипическая Генотипическая (ненаследственная, (наследственная,

групповая или определенная) индивидуальная или неопределенная) модификационная комбинативная мутационная

Границы модификационной изменчивости определяет норма реакции. Она контролируется генотипом и наследуется. Если признак имеет узкую норму реакции, он изменяется незначительно (например, жирность молока у крупного рогатого скота). Признак с широкой нормой реакции изменяется в широких пределах (например, масса тела).

^ Комбинативная изменчивость – это перекомбинация генов родителей у потомков без изменения структуры генетического материала. Механизмы комбинативной изменчивости:

1. Свободное комбинирование хромосом и хроматид при расхождении их в мейозе:

2. Кроссинговер при мейозе (рекомбинация генов):

3. Случайная встреча гамет разного типа при оплодотворении.

Мутагенные факторы и мутагенез

Мутационная изменчивость, или мутации, – внезапное изменение генетического материала под влиянием факторов среды.

Мутации наследуются, их нельзя предсказать, они индивидуальны и являются материалом для естественного отбора.

Мутагены – факторы, вызывающие мутации:

экзомутагены – факторы внешней среды,

эндомутагены – метаболиты организма человека.

Мутагенные факторы подразделяют на физические, химические и биологические.

^ Физические мутагены – различные виды излучений, температура, влажность и другие.

Они вызывают:

Нарушения структуры генов и хромосом;

Образование свободных радикалов, взаимодействующих с ДНК;

Разрывы нитей веретена деления;

Образования димеров соседних пиримидиновых оснований одной цепи ДНК (Т–Т, Т–Ц) и другие.

^ Химические мутагены :

Природные органические и неорганические соединения (алкалоиды, нитриты, нитраты);

Продукты промышленной переработки угля и нефти;

Синтетические вещества, не встречавшиеся ранее в природе (бытовая химия, химические соединения для сельского хозяйства, пищевые консерванты);

Различные лекарства (некоторые антибиотики, наркотические вещества, гормональные препараты), способные вызывать у человека врожденные пороки развития.

^ Супермутагены (иприт, этиленимин) – вещества химической природы, которые действуют сильнее проникающей радиации.

Химические мутагены действуют в период репликации ДНК и обычно являются причиной генных мутаций. Они вызывают дезаминирование и алкилирование нуклеотидов, замену азотистых оснований их аналогами, ингибируют синтез предшественников нуклеиновых кислот.

Вирусы краснухи, гриппа, кори, оспы;

Процесс образования мутаций называется мутагенезом. Мутагенез может быть спонтанным и индуцированным.

^ Спонтанный, или самопроизвольный , мутагенез возникает при ошибках репликации и репарации ДНК и под действием метаболитов организма (например, перекиси и альдегиды).

^ Индуцированный, или направленно вызванный , мутагенез происходит под действием определенного мутагена – ультрафиолетового или ионизирующего излучения.

^ Классификация мутаций

По мутировавшим клеткам мутации могут быть соматические (например, разный цвет глаз у одного человека) и генеративные (или гаметические). Генеративные мутации передаются потомству, соматические проявляются у самой особи. Они передаются по наследству только при вегетативном размножении.

^ По исходу (значению) для организма выделяют мутации положительные, нейтральные и отрицательные.

Положительные мутации появляются редко. Они повышают жизнеспособность организма и имеют значение для эволюции (например, мутации, приводящие к появлению четырехкамерного сердца в процессе эволюции хордовых).

Нейтральные мутации практически не влияют на процессы жизнедеятельности (например, мутации, приводящие к наличию веснушек).

^ Отрицательные мутации делят на полулетальные и летальные. Полулетальные мутации снижают жизнеспособность организма, сокращают срок его жизни (например, мутации, приводящие к болезни Дауна).

^ Летальные мутации вызывают смерть организма до рождения или в момент рождения (например, мутации, приводящие к отсутствие головного мозга).

По изменению фенотипа мутации бывают морфологические (например, уменьшенные глазные яблоки, шесть пальцев на руке) и биохимические (например, альбинизм, гемофилия).

^ По изменению генотипа выделяют мутации геномные, хромосомные и генные.

Геномные мутации – это изменение числа хромосом под действием факторов среды.

Гаплоидия – набор хромосом 1n. В природе она встречается у трутней (самцов) пчел. Жизнеспособность таких организмов снижена, так как у них проявляются все рецессивные гены.

Полиплоидия – увеличение гаплоидного набора хромосом (3n, 4n, 5n). Полиплоидия используется в растениеводстве. Она приводит к повышению урожайности. Для человека гаплоидия и полиплоидия это летальные мутации.

Анеуплоидия – это изменение числа хромосом в отдельных парах (2n±1, 2n±2 и так далее).

Трисомия: например, если к паре половых хромосом женского организма добавляется Х-хромосома, развивается синдром трисомии Х (47, ХХХ), если она добавляется к половым хромосомам мужского организма, развивается синдром Клайнфельтера (47, ХХY).

Моносомия: отсутствие одной хромосомы в паре – ♀45, Х0 – синдром Шерешевского-Тернера.

Нулисомия: отсутствие пары гомологичных хромосом (для человека – летальная мутация).

^ Хромосомные мутации (или хромосомные аберрации) – это изменения структуры хромосом (межхромосомные или внутрихромосомные). Перестройки внутри одной хромосомы называются инверсии, нехватки (дефишенси и делеции), дупликации.

Межхромосомные перестройки называются транслокации

Инверсия (отрыв участка и его поворот на 180 о)

Нехватка Делеция (выпадение среднего участка)

Дефишенси (отрыв концевого участка) А B Е C D E

Дупликация (удвоение участка)

Транслокация (перенос участка на негомологичную хромосому)

^ Изменения структуры хромосом

Примеры: делеция – синдром кошачьего крика у человека;

дупликация – появление полосковидных глаз у дрозофилы;

инверсия – изменение порядка расположения генов.

Транслокации могут быть: реципрокные – две хромосомы обмениваются сегментами; нереципрокные – сегменты одной хромосомы переносятся на другую; робертсоновские – две акроцентрические хромосомы соединяются своими центромерными участками.

Нехватки и дупликации всегда проявляются фенотипически, так как изменяется набор генов.

Не всегда проявляются инверсии и транслокации.

В этих случаях затрудняется конъюгация гомологичных хромосом и нарушается распределение генетического материала между дочерними клетками.

^ Генные мутации называются точковые, или трансгенации .

Они связаны с изменениями структуры генов и вызывают развитие болезней обмена веществ (их частота 2-4%).

Изменения структурных генов.

1. Сдвиг рамки считывания происходит в случае выпадения или вставки одной или нескольких пар нуклеотидов в молекулу ДНК.

2. Транзиция – мутация, при которой происходит замена пуринового основания на пуриновое или пиримидинового на пиримидиновое (А↔ Г или Ц↔ Т). Такая замена приводит к изменению кодонов.

3. Трансверсия – замена пуринового основания на пиримидиновое или пиримидинового на пуриновое (А↔Ц; Г↔Т) – приводит к изменению кодонов.

Изменение смысла кодонов приводит к мисценс-мутациям. Если образуются бессмысленные кодоны (УАА, УАГ, УГА), они вызывают нонсенс-мутации. Эти кодоны не определяют аминокислоты, а являются терминаторами – они определяют конец считывания информации.

^ Изменения функциональных генов

1. Изменен белок-репрессор, он не подходит к гену-оператору. В этом случае структурные гены не выключаются и работают постоянно.

2. Белок-репрессор плотно присоединяется к гену-оператору и не «снимается» индуктором. Структурные гены постоянно не работают.

3. Нарушение чередования процессов репрессии и индукции. Если индуктор отсутствует, специфический белок синтезируется, в присутствии индуктора он не синтезируется. Такие нарушения работы транскриптонов наблюдаются при мутациях гена-регулятора или гена-оператора. В настоящее время описано около 5 000 болезней обмена веществ, причиной которых являются генные мутации.

Примерами их могут быть фенилкетонурия, альбинизм, галактоземия, различные гемофилии, серповидно-клеточная анемия, ахондроплазия и др. В большинстве случаев генные мутации проявляются фенотипически.

^ Репарация наследственного материала

Антимутагенез – это, воздействие на клетку и организм, которое блокирует или уменьшает вероятность возникновения мутаций. Устойчивость генетического материала обеспечивают антимутационные механизмы.

1. Естественные барьеры: диплоидный набор хромосом (парность хромосом), двойная спираль ДНК, избыточность (вырожденность) генетического кода, повтор некоторых генов.

2. Репарация структуры ДНК- это внутриклеточный процесс восстановления поврежденной молекулы ДНК. Повреждениями могут быть разрывы нитей ДНК, сшивание (соединение) нитей ДНК или ДНК – гистон, нарушения структуры азотистых оснований.

Репарация может происходить:

а) до удвоения молекулы ДНК (дорепликативная);

б) в процессе удвоения молекулы (репликативная) и в) после удвоения молекулы ДНК (пострепликативная).

В 1962г. К.Руперт описал фотореактивацию, или световую репарацию. Он установил, что при облучении ультрафиолетом фагов, бактерий и протистов резко снижается их жизнеспособность. Но если на них действовать видимым светом, жизнеспособность восстанавливается. При действии ультрафиолета в молекуле ДНК образуются димеры (химические связи между основаниями Т-Т одной цепочки). Это тормозит считывание информации. Видимый свет активирует ферменты, которые разрушают связи димеров.

Чаще встречается репарация темновая, или эксцизионная (описана А.Герреном в 50-е годы ХХ века). Она заключается в том, что ферменты находят и « вырезают» поврежденный участок нити ДНК и на его место вставляют синтезированный неизмененный участок.

^ В этих процессах участвуют четыре группы ферментов:

а) эндонуклеаза « узнает» поврежденный участок и рядом с ним разрывает нить ДНК;

б) экзонуклеаза удаляет поврежденный участок;

в) ДНК-полимераза по принципу комплементарности синтезирует фрагмент ДНК на месте разрушенного;

г) лигаза соединяет концы вставленного участка с основной нитью ДНК.

Нарушение процесса репарации может привести к развитию болезней, примерами которых являются пигментная ксеродерма и анемия Фанкони. При пигментной ксеродерме под действием солнечных лучей на коже появляются ожоги, развиваются язвы, ороговение эпидермиса, поражения глаз и появление раковых опухолей.

Анемия Фанкони связана с нарушением функций красного костного мозга, что приводит к снижению содержания форменных элементов крови и развитию гиперпигментации.

3. Наличие антимутагенов. Это вещества различной природы, которые в небольших концентрациях способны стабилизировать мутационный процесс. Примерами могут быть биологически активные соединения гистамин и серотонин, антиоксиданты, сульфаниламидные препараты, свежие овощные соки и некоторые другие. Наиболее эффективным антимутагеном является α- токоферол, который снижает число как генных, так и хромосомных мутаций. Чем больше токоферолов содержалось в растениях, тем больше была устойчивость их генетического аппарата к действию мутагенных факторов.

^ Биологические основы канцерогенеза (генетические концепции)

Канцерогенез – процесс образования и развития опухолей. Изменения происходят на молекулярно-генетическом уровне. В их основе лежат механизмы, которые контролируют рост, размножение и дифференцировку клеток.

В 1901г. впервые Г.де Фриз высказал предположение, что опухоль образуется в результате мутации в соматических клетках. Это – мутационная концепция канцерогенеза.

Основы вирусо-генетической концепции представлены в работах А.Борреля и Ф.Боска (1903г.). Они считали, что вирусы являются причиной лейкозов и саркомы кур. Л.А.Зильбер (1945г.) называл вирусы универсальной причиной злокачественного роста.

Мутагены и канцерогены активируют вирусы, их геном включается в ДНК клетки и изменяет ее свойства. Ю.М.Оленов (1967г.) и А.Ю.Броновицкий (1972г.) предложили эпигеномную концепцию.

Они считали, что в основе превращения нормальной клетки в опухолевую лежат нарушения структуры функциональных генов. Последней по времени является генная концепция – концепция протоонкогенов (Р.Хюбнер, 1969г.; Г.И.Абелев, 1975г.).

В составе ДНК любой клетки содержатся неактивные участки – протоонкогены. Они могут быть получены от родителей или внесены в клетку вирусом. Активируются протоонкогены при мутациях или при попадании в клетку промотора вируса и переходят в активную форму – онкогены. Нормальная клетка преобразуется в опухолевую клетку.

Лучшие статьи по теме