Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Фундаменты 
  • Схема обработки на фрезерном станке. Обрабработка фрезерованием. Технология процесса фрезеровки на обычном станке

Схема обработки на фрезерном станке. Обрабработка фрезерованием. Технология процесса фрезеровки на обычном станке

Базированием называется придание детали определенного положения относительно режущего инструмента при ее механической обработке на станках. Оно осуществляется путем доведения базовых поверхностей детали до соприкосновения с установочными элементами приспособления. При этом, если установочная и исходная базы детали не совпадают, неизбежно возникает погрешность базирования, величина которой определяется предельными отклонениями исходной базы относительно режущего инструмента. О погрешности базирования можно говорить только при обработке способом автоматического получения заданного размера, когда для всей партии обрабатываемых деталей настройка режущего инструмента постоянна. И, наоборот, при обработке способом пробных проходов при любом расположении установочной и исходной баз погрешность базирования отсутствует, так как для каждой обрабатываемой детали расположение режущего инструмента корректируется по исходной базе.

Погрешность выдерживаемого размера обрабатываемой детали DИ можно представить как сумму погрешности базирования - D баз и всех прочих погрешностей, связанных с процессом обработки - w.

Откуда, допускаемое значение погрешностей базирования

(3.2)

Следовательно, обеспечение требуемой точности размера возможно при соблюдении условия

где - фактическое значение погрешности базирования.

При обратном соотношении этих величин, во избежание брака, необходимо уменьшить значение , для чего необходимо:

Или изменить схему базирования;

Или ужесточить допуски на базисные размеры;

Или расширить поле допуска выдерживаемого размера (если это не нарушает правильность функционирования детали).

Величина рассчитывается аналитически и представляется виде полного дифференциала уравнения размерной цепи, в котором приращение вектора, связывающего исходную базу детали с установочной базой приспособления, выражена через соответствующего приращения базисных размеров.

Объясним суть метода на примере.

Предположим у детали цилиндрической формы требуется профрезеровать уступ, выдержав размер И (см. рис.3.1).

1. При установке на плоскости (схематически показанной на рис. 3.2), погрешность базирования будет равна нулю, т.к. исходная база у всех заготовок занимает одно и то же положение и совпадает с установочной.


Рис. 3.2 Рис. 3.3

Исходя из равенства И=Н (с учетом, что Н = const, DН = 0), можем написать, что

(3.5)

2. Оставив все прочие условия постоянными, вместо приспособления, показанного на рис 3.2, примем для установки деталей призму, схематически показанную на рис 3.3.

При данной установке, где исходная и установочная базы не совпадают, будем иметь погрешность базирования, что зависит от погрешности заданного размера DD . При этом исходный размер выражается в соответствии с рис 3.3:

. (3.6)

Подставляя значение О / К (что определяется из DОО / m ) в выражении (3.6), получим

. (3.7)

Откуда погрешность базирования (с учетом, что DН= 0) будет равна

(3.8)

Итак, при этом, погрешность базирования имеет место и обратно пропорциональна величине погрешности заданного размера - DD=d D .

Работа выполняется на вертикально фрезерном станке.

Режущий инструмент – фреза концевая с цилиндрическим хвостовиком, диаметром D =25мм.

Заготовка – валики, в количестве 5 штук с диаметром Æ20 -0,36 мм, длиной L= 100мм, (желательно брать партию заготовок с большим полем рассеивания).

Работу следует выполнять в следующей последовательности:

1) Ознакомиться с рабочим чертежом заготовки (рис 3.1.) и схемами установки (рис 3.2 и 3.3)

2) Установить заготовку по первой схеме и по заданной настройке, обработать партию деталей с одного конца. Величина исходного размера и режимы резания задаются руководителем занятий.

3) Установить детали по второй схеме см. рис. 3.3) и профрезеровать уступ с другой стороны. Во избежание путаницы, на торцевых поверхностях наносить знаки кернером.

Идея разработки типовых технологических процессов механической обработки для деталей одного класса) принадлежит проф. А. П. Соколовскому.

Работа по типизации технологических процессов предусматривает предварительную классификацию деталей и приведение теоретически бесконечного числа комбинаций форм деталей и размеров к минимальному количеству типов, для которых можно разработать типовые технологические процессы обработки в нескольких вариантах с дальнейшим использованием применительно к конкретным деталям и условиям работы данного завода.

При классификации деталей машин проф. А. П. Соколовский предлагает все многообразие деталей разделить на классы, которые в свою очередь подразделяют на подклассы, группы и подгруппы. Классом называется совокупность деталей, характеризуемых общностью технологических задач, возникающих при обработке деталей опредеделенной конфигурации.

По классификации А. П. Соколовского предусмотрено 15 классов (валы, втулки, диски, эксцентриковые детали, крестовины, рычаги, плиты, шпонки, стойки, угольники, бабки, зубчатые колеса, фасонные кулачки, ходовые винты и червяки, мелкие крепежные детали). При этом указывается, к какому классу целесообразно добавлять и другие виды деталей, характерные для отдельных отраслей промышленности (например, шариковые или роликовые подшипники, лопатки турбин ит. д.) Подгруппы в свою очередь делятся на типы деталей. К одному типу относятся детали, для которых можно разработать общую карту типового технологического процесса, но при этом допускаются некоторые отклонения в порядке обработки, а также исключение или добавление некоторых переходов или даже операций. Как отмечалось выше, на станках фрезерной группы можно обработать почти любые поверхности.

Детали, обрабатываемые на фрезерных станках. можно классифицировать по следующим основным признакам:

  1. конфигурация обрабатываемых деталей:
  2. тип инструмента, с помощью которого целесообразно производить обработку поверхностей деталей;
  3. размеры обрабатываемых поверхностей деталей;
  4. точность (размеров и формы) обрабатываемых поверхностей.

По первому признаку можно создать класс, состоящий из деталей с наиболее распространенными сочетаниями поверхностей (открытые плоскости, многогранники, плоскости с пазами, шпоночные пазы, сочетания вертикальных или горизонтальных плоскостей с наклонными, поверхности с винтовыми канавками, типовые фасонные поверхности и др.). По второму признаку (тип инструмента) можно образовать классы деталей, которые экономически выгодно обрабатывать различными типами фрез или набором фрез: торцовыми твердосплавными, цилиндрическими, торцовыми, дисковыми, концевыми, угловыми и др. - в зависимости от размера партии или размеров обрабатываемых поверхностей деталей в условиях фрезерования единичной детали или группы одновременно обрабатываемых деталей.

При этом в обоих случаях должны быть учтены размеры обрабатываемых поверхностей (масштабный фактор), требуемая точность размеров и класс шероховатости обработанной поверхности.

К каждому классу типовых деталей предъявляют специфические технологические требования.

Так, например, при обработке деталей, ограниченных плоскостями, необходимо выполнить в заданных пределах следующее параметры: плоскостность, точность размеров, точность расположения, класс шероховатости обработанной поверхности, качество поверхностного слоя и др. Для пазов и уступов основные технологические требования - обеспечение точности размеров по ширине и глубине, симметричности расположения паза (или уступов) и др.

Основным требованием при обработке деталей, ограниченных фасонными поверхностями, является обеспечение заданного профиля, расположения, размеров и класса шероховатости поверхностей.

Фрезерные станки . Основное назначение фрезерного станка (фрезера) - производить плоское и фасонное (профильное) строгание кромок деталей и оправку (обгон) по периметру щитов, рамок, коробок.
Основные части фрезерного станка: станина, рабочий стол, супорт, вал-шпиндель, вставной шпиндель, режущий инструмент.
Супорт расположен под рабочим столом; он несет на себе важнейшую часть станка - вал-шпиндель. Через отверстие в столе вал-шпиндель выходит верхним концом на рабочую поверхность стола. При ременной передаче его средняя часть служит рабочим шкивом. Супорт с валом-шпинделем можно поднимать, опускать и закреплять в требуемом положении стопорным винтом. Вал-шпиндель приводится во вращение непосредственно от вала электродвигателя или через ременный привод.
В верхний конец вала-шпинделя вставляется рабочий (вставной) шпиндель, на который насаживается режущий инструмент. Верхняя часть вставного шпинделя входит в шарикоподшипник, укрепленный на кронштейне. Благодаря этому шпиндель и режущий инструмент не испытывают вибраций при высоком их расположении или при больших рабочих нагрузках.
При фрезеровании прямолинейных деталей на рабочем столе устанавливается направляющая линейка. Она состоит из двух частей, соединенных литой скобой, огибающей режущий инструмент. Части линейки можно раздвигать в зависимости от размеров режущего инструмента и устанавливать перпендикулярно к столу либо в одной плоскости, когда фрезерование профильное или когда оно производится не на всю толщину детали, либо в разных плоскостях, как плиты фуговального станка, если фрезерование представляет собой плоское строгание.
На линейке часто укрепляют верхние прижимы для обрабатываемых деталей. Сама линейка крепится винтами, проходящими через прорези в рабочем столе. На рабочем столе для установки и крепления упоров имеются два параллельных продольных паза поперечного сечения, в форме ласточкина хвоста. При сквозном (во всю длину) фрезеровании деталей применяются прижимы. Верхние прижимы обычно крепят к направляющей линейке, боковые устанавливают на рабочем столе.
Верхний и боковой прижимы к фрезерному станку можно устроить так, чтобы они одновременно выполняли роль ограждений. Лучшими нужно признать роликовые прижимы, так как они облегчают подачу обрабатываемого материала. Гребенки и пружины, наоборот, несколько затрудняют подачу вследствие трения. До сего времени большинство фрезерных станков имеет ручную подачу. Станки новейшей конструкции оборудованы механизмами автоматической подачи.
Режущий инструмент для фрезерных станков. На фрезерных станках в качестве режущего инструмента применяют патроны со вставленными в них плоскими ножами, фрезерные головки, цельные и составные фрезы, двухрезцовые фрезы-крючья, прорезные диски, пилы.
Плоские ножи, односторонние и двусторонние, имеют прямолинейные режущие кромки для плоского фрезерования или криволинейные для выборки несложного и неглубокого профиля. Толщина ножей 8-10 мм. Нож вставляется в прорезь рабочего шпинделя и крепится торцевым болтом. Крепление плоских односторонних ножей может производиться в патроне, представляющем собой две зажимные шайбы с канавками, в которые ножи вставляются боковыми кромками. Шайбы стягиваются на шпинделе гайкой. Крепление плоских односторонних ножей в зажимных шайбах более надежно. Вылет ножей при ослаблении гайки предупреждается штифтами в канавках верхней шайбы, входящими в соответствующие вырезы на боковых кромках ножей.
Ножи можно крепитыи в фрезерных головках - ножевых валах уменьшенной длины, имеющих в центре отверстие для рабочего шпинделя. Фрезерную головку, насаженную на шпиндель, затягивают гайкой.
Цельная фреза (шарошка) представляет собой многорезцовый инструмент, изготовленный из одного куска стали. Различают цельные фрезы цилиндрические с прямым и косым зубом, прорезные, пазовые, фасонные.
Цельные фрезы имеют ряд преимуществ: а) наличие значительного количества резцов - у фасонных фрез не менее четырех, у цилиндрических до десяти; б) выбалансирование фрез при их изготовлении; в) сохранение резцами при правильной их заточке постоянного профиля; г) относительная безопасность в работе благодаря отсутствию вставных ножей; д) быстрая установка на шпинделе.
Диаметр цельных фрез от 80 до 120 мм. Составные фрезы собирают из нескольких цельных фрез, соединяя их в общую фрезерную головку. Составные фрезы применяют для обработки широких, глубоких или очень сложных профилей. Двухрезцовые фрезы-крючья предназначены преимущественно для выработки шипов и проушин. Они рассчитаны на ширину фрезерования в 4, 6, 8, 10 и 12 мм. Диаметр окружности вращения режущих кромок -140, 160 и 180 мм. Широкое применение получили фрезы-крючья из стальных пластин шириной 80 мм.
Прорезные диски, служат преимущественно для выборки проушин шириной 8, 9, 10, 12, 14, 16 и 18 мм. Диски обычно имеют три резца, но в настоящее время выпускаются диски и с большим количеством резцов. Диаметр дисков 250, 300 и 350 мм.
Угол заострения вставных фрезерных ножей 40°, резцов цельных фрез 50-60°; угол резания 60-70°. На фрезерных станках в качестве, режущего инструмента применяют также небольшие мелкозубые круглые пилы.
Гайку для закрепления режущего инструмента на шпинделе фрезерного станка затягивают ключом до отказа. Применение всякого рода рычагов и «сцепленных» ключей не допускается. Резьба шпинделя должна выступать над гайкой не менее чем на 1 мм.
Для точной установки режущего инструмента по высоте на шпиндель надевают кольца-подкладки. Если устанавливается несколько инструментов на определенном расстоянии друг от друга, то применяют кольца-прокладки.
Цилиндрические фрезы неизменяемого профиля. Недостаток большинства режущих инструментов для фрезерных станков заключается в том, что после продолжительной работы и неоднократной заточки уменьшается радиус и изменяется профиль режущей кромки. Нож или фреза становятся непригодными к работе.

РАБОТА НА ФРЕЗЕРНЫХ СТАНКАХ

Фрезерование прямолинейных кромок . Прямолинейные кромки фрезеруют: а) для выверки их под линейку; б) для отборки профиля во всю длину детали (сквозное фрезерование); в) для отборки профиля на части длины детали (несквозное фрезерование).
Во всех трех случаях фрезерование ведется по направляющей линейке. При обработке более или менее длинных деталей к половинкам линейки прикрепляют деревянные бруски. Для выверки кромки детали под линейку выходную половину линейки (вторую от станочника) устанавливают в одной плоскости с режущими кромками резцов, а переднюю половину отодвигают или, как говорят, утапливают от линии резания на толщину стружки. Часто делают иначе: укрепляют на половинках линейки бруски, у которых разница в толщине равна толщине стружки. Работу ведут так же, как на фуговальном станке.
В случае профильного фрезерования, когда часть ширины обрабатываемой кромки не фрезеруется, обе половинки направляющей линейки устанавливают в одной плоскости и тогда режущие кромки фасонных ножей или фрез выступают за линейку на глубину фрезерования. В этом случае очень удобно прикрепить к линейке один сплошной брусок с прорезью для режущей части инструмента.
Работа ведется так же, как и при фрезеровании под линейку. При несквозном фрезеровании деталь в несколько наклонном к линейке положении упирают торцем в упор перед резцами, затем ее прижимают к направляющей линейке. В таком положении деталь надвигают на резцы до противоположного упора.
При прямолинейном фрезеровании, особенно при фрезеровании узких деталей - штабиков, раскладок и т. п., обязательно нужно, пользоваться верхними и боковыми прижимными приспособлениями. Если таких приспособлений нет, прикрепляют отфугованный брусок строго параллельно направляющей линейке на расстоянии от нее, равном ширине обрабатываемых деталей, и между бруском и линейкой проталкивают детали под фрезу. В большинстве случаев прикрепляют сверху второй брусок, который одновременно служит прижимом для обрабатываемых деталей и предохранительным устройством, обеспечивающим безопасность работы.
Фрезерование криволинейных кромок . Фрезерование внешних криволинейных кромок производится на шаблоне по упорному кольцу, надетому на рабочий шпиндель под фрезой. Для уменьшения трения в качестве упорного кольца часто применяют шарикоподшипник.
Шаблон для фрезерования одной криволинейной кромки детали (например кронштейна для полочки) состоит из щита толщиной 25-50 мм, кромка которого обработана соответственно кривизне предназначенной к обработке детали. На шаблоне устроены по размерам детали продольный и торцевые упоры и один или несколько зажимов. Лучшими зажимами по быстроте действия считаются эксцентриковые. Для того чтобы эксцентрики не оставили вмятин на поверхности обрабатываемой детали, под ними подвешены на пружинах деревянные подкладки. Рабочая кромка шаблона и рабочая поверхность эксцентрика в целях предохранения от быстрого износа часто обтягивают белой жестью. Заготовку, опиленную на ленточной пиле по кривым кромкам с припуском на фрезерование, укладывают и зажимают на шаблоне и вместе с ним подают на вращающуюся фрезу. Кромка шаблона в течение всего времени подачи должна быть прижата к упорному кольцу. Резцы фрезы будут обрабатывать кромку детали соответственно кривизне кромки шаблона.
Описанным способом выполняется как гладкая, так и профильная обработка. Фрезеруемая кромка может иметь любую кривизну, но с радиусом закруглений не менее радиуса упорного кольца.
Оправка (обгон) по периметру щитов и рамок производится также на шаблоне по упорному кольцу. Применяемые шаблоны изготовляются в виде точно обработанных в размер щитов. К шаблону щит или рамку прикрепляют (накалывают) посредством шпилек-наколок. При этом располагают щит или рамку на столе станка под шаблоном. Упорное кольцо надевают над фрезой.
Обрабатываемый щит или рамку накалывают внутренней стороной, так как от наколок остакжя следы. Менее заметные следы оставляют наколки плоские, овальные или ромбические, если их правильно расположить относительно волокон в щите или рамке; более заметные следы оставляют наколки круглые и квадратные.
При работе на фрезерных станках необходимо особенно строго соблюдать правила техники безопасности, так как режущий инструмент полностью оградить не удается, а фрезерование ведется при большом числе оборотов. Станочник обязан следить, чтобы установка супорта была точной и надежной, верхняя часть шпинделя во время работы не вибрировала и резцы не били, ограждения опасных мест были исправны. Он должен проверять крепление вставного шпинделя, установку и крепление режущего инструмента, подтягивать болты и гайки. Работать можно только исправным, выбалансированным, хорошо отточенным режущим инструментом, не имеющим трещин, зазубрин, зажогов.
Приспособления к фрезерным станкам для механизации подачи, станки с подающим механизмом . Станкостроительная промышленность в настоящее время выпускает приспособления для механизации подачи на фрезерных станках старых конструкций; новые фрезерные станки выпускаются с постоянным механизмом подачи. Довольно широкое применение имеют следующие приспособления.
Звездочка надевается на рабочий шпиндель вместо упорного кольца или само кольцо вырабатывается в виде звездочки. Во время работы станка звездочка или звездчатое кольцо от специального механизма вращается с небольшим числом оборотов в сторону, обратную вращению шпинделя. При этом она взаимодействует с шаблоном, применяемым для фрезерования. В рабочей кромке шаблона, покрытой листовой сталью, устраиваются гнезда, размерами и расположением соответствующие зубьям звездочки и их шагу. Зубьями звездочки шаблон, прижатый к упорному кольцу, автоматически передвигается навстречу резцам вращающейся фрезы.
Скорость подачи звездочкой может быть от 5 до 15 м/мин в зависимости от породы древесины, глубины и ширины фрезерования, а также от числа оборотов звездочки.
Двухвальцевое приспособление: работает так же, как подающие вальцы других станков. Обычно применяют две пары вальцев, располагая их по обеим сторонам фрезы.
Одновальцевое приспособление с горизонтальным расположением вальца над рабочим столом: кроме подачи прямолинейных деталей на фрезу, прижимает детали к рабочему столу в дополнение к верхним прижимным устройствам. Вальцевые приспособления служат для подачи прямолинейных деталей; работают они от индивидуальных электродвигателей мощностью 0,5 квт. Скорость подачи до 25 м/мин. Поверхность вальцев покрыта резиной. Гусенично-конвейерное приспособление с пружинящими упорами устанавливают над обрабатываемыми деталями или сбоку. Наряду с подачей это приспособление производит прижим деталей к столу или к направляющей линейке. Работает оно от индивидуального электродвигателя.
Станки с механической подачей . Станкостроительная промышленность выпускает фрезерные станки с механической подачей обрабатываемых деталей посредством карусельного стола. Карусельно-фрезерный одношпиндельный станок ФКА снабжен круглым рабочим столом, вращающимся от индивидуального электродвигателя.
Стол оборудован пневматическими прижимами. На станке можно обрабатывать одну или несколько деталей разной формы. Шаблоны с деталями закрепляют на столе станка по его окружности. Шпиндель под действием подвешенного через блок груза или силой пружины прижимается упорным кольцом к рабочей кромке шаблона. Как только упорное кольцо приходит в соприкосновение с шаблоном, автоматически включается электродвигатель вращения стола и начинается обработка детали; с отводом кольца электродвигатель автоматически выключается.
Скорость вращения стола в процессе обработки детали можно уменьшать. К этому прибегают при фрезеровании углов с целью предупреждения сколов. Шпиндель делает 6000 об/мин, мощность его электродвигателя 4,2 квт; мощность электродвигателя вращения стола 1,2 квт. Диаметр стола 1000 мм.
Станок ФКА обладает высокой производительностью. Работа фрезеровщика сводится только к уборке обработанных деталей и закладке в шаблоны новых. Это выполняется на ходу станка.
Двухшпиндельный карусельно-фрезерный станок Ф2КА отличается от одношпиндельного более совершенной конструкцией, большей мощностью и более высокой производительностью. У него один шпиндель производит предварительную, более грубую обработку, второй - окончательную, чистую. Оба шпинделя надвигаются на обрабатываемые детали супортами, выступающими из пневматических цилиндров.
Станина станка состоит из двух соединенных между собой частей, опирающихся на общую фундаментную плиту. На одной части станины смонтирован стол, на второй - рабочая часть станка и электродвигатель стола. Здесь же располагается баллон со сжатым воздухом, если воздух не подается к станку от общезаводского воздухопровода.
Диаметр стола 2000 мм, окружная скорость вращения стола до 20 м/мин. Число оборотов каждого шпинделя 6000 в минуту. Мощность электродвигателя каждого рабочего шпинделя 8 квт, электродвигателя стола 2,5 квт.

ИСПОЛЬЗОВАНИЕ ФРЕЗЕРНЫХ СТАНКОВ ДЛЯ ВЫПОЛНЕНИЯ РАЗНЫХ СТОЛЯРНЫХ РАБОТ

В столярном производстве фрезерный станок считается универсальным. Помимо фрезерования по линейке и упорному кольцу, на нем можно вырабатывать рамные шипы - одинарные в двойные, ящичные шипы - прямые и в форме ласточкина хвоста; выбирать проушины и гнезда, а также пазы - прямые и в «ласточкин хвост»; обстрагивать ящики в размер по длине и ширине; опиливать ящики по высоте. При обработке брусков можно заменить фрезерным станком фуговальный и рейсмусовый станки. Временные мастерские на строительствах и предприятиях с небольшим объемом производства обязательно имеют фрезерный станок.
Большая часть специальных работ на фрезерном станке выполняется с помощью различных приспособлений. Приспособления для выработки рамных шипов. Каретка с продольным и торцевым упорами и верхним прижимом для выработки шипов и проушин у коротких брусков. Каретку с уложенными на ней брусками перемещают по пазам в столе или по укрепленным на столе направляющим. Для прижима материала лучше всего использовать рычажное устройство. На шпиндель надевают прорезной диск для шипов и проушин. Приемы работы такие же, как на торцовочном станке.
Каретка для выработки шипов у длинных брусков. Ее устройство такое же, как у каретки шипореза ШО-6. Пристраивают каретку подвижно к боковой кромке рабочего стола фрезера. Приемы работы, как на станке ШО-6.
Деревянная каретка, укрепляемая двумя петлями на стене или на специальной стойке. Ее можно изготовить своими силами непосредственно на строительстве. Каретка для выработки скошенных шипов (например, у боковых царг стула). Устройство ее такое же, как у каретки для выработки прямых шипов, с тем лишь изменением, что на салазках для подачи укрепляется клиновидная подставка, наклоненная к резцам под углом скоса шипа. Для выработки шипов со скосом в обратную сторону направляют салазки другим концом или перевертывают клиновидную подставку.
В настоящее время промышленность выпускает одношпиндельный фрезерный станок ФШ-3, специально приспособленный для выработки рамных шипов. Станок оборудован шипорезной кареткой с быстродействующим зажимом. При наличии этого фрезера предприятия с небольшим объемом производства могут вполне обходиться без шипорезного станка.
Приспособления для выработки ящичных шипов. Цулага-ящик для выработки прямых ящичных шипов. Обрабатываемые щитки (стенки ящиков) укладывают в цулагу на ребро, зажимают эксцентриком или клином и подают на резцы по направляющей линейке станка, по специально устанавливаемой направляющей планке или по упорному кольцу. На шпиндель надевают через прокладки прорезные диски или фрезы-крючья. Каретка с винтовым, эксцентриковым или пневматическим зажимом для подачи щитков под фрезы. Щитки укладывают так же, как в ящике-цулаге. Каретку передвигают по салазкам, укрепленным на рабочем столе.
Для подачи щитков шириной до 150 мм пачками толщиной до 200 мм промышленность выпускает съемную каретку с рычагом для ее перемещения и быстродействующим эксцентриковым зажимом. Вес каретки 20 кг.
Приспособление для выработки сквозных и полупотайных шипов «ласточкин хвост». На этом приспособлении, выпускаемом промышленностью, производится одновременная выработка шипов у двух щитов шириной до 400 мм и толщиной до 25 мм, зажатых во взаимно перпендикулярном положении с лицевыми сторонами, обращенными внутрь образуемого прямого угла. Шипы зарезаются попарно. Режущим инструментом служит фреза, работающая боковыми кромками и зубчиками на торце. Такие фрезы часто называют торцевыми или цинк-фрезами. Приспособление съемное, весит 8 кг.
Приспособления для выполнения на фрезерном станке различных других работ. Шаблон для выработки штабиков и раскладки с одновременным откраиванием их от доски. Эта работа производится наборной фрезой из профильной фрезы и пилы. Доска подается по направляющей линейке на шаблоне с боковым роликовым прижимом. Прижимной ролик имеет по окружности гребень, которым входит в пропил, препятствуя смещению доски по вертикали.
Приспособление для выборки шпунта и обработки гребня без переналадки станка. Приспособление, имеющее вид коробки с горизонтальной продольной перегородкой, укрепляют на рабочем столе плашмя, т. е. широкой стороной. В коробке устроена сквозная круглая прорезь, через которую проходит шпиндель с фрезами. Боковым упором для обрабатываемых деталей служит вертикальная внешняя стенка коробки. В обоих отделениях коробки имеются верхние прижимы в виде гребешков - деревянные или металлические.
На шпинделе внизу крепится фреза для выборки шпунта, а вверху - фреза для выработки гребня. Деталь (делянка), пропущенная через нижнее отделение приспособления, выходит из нее со шпунтом на кромке.
Перевернув деталь второй кромкой к шпинделю, пропускают ее через второе отделение приспособления. Оттуда деталь выходит с гребнем на второй кромке.
Приспособление для обгона по периметру плинтусной коробки и колпака шкафа с закруглением углов представляет собой четырехугольный щит с закругленными углами и четырьмя упорными колодками в углах. Щит должен быть точно обработан. Насадив обрабатываемый комбинат на упорные колодки и скрепив его со щитом зажимами или наколками, производят обгон с закруглением углов по упорному кольцу.
Приспособление для обрезки ящиков по высоте. Приспособление сделано в виде рамы, на которую надевают обрабатываемый ящик. Скрепив ящик с рамой эксцентриковым зажимом, подают его на пилы по направляющей линейке. Ящик обрезается одновременно сверху и снизу двумя насаженными на шпиндель пилами.
Выше описаны только приспособления, имеющие повсеместное применение. Приспособлений к фрезерному станку, разнообразных по устройству и назначению, очень много.

Популярные статьи



Обработка заготовок на фрезерных станках

Фрезерование – лезвийная обработка резанием линейчатых поверхностей многозубым инструментом – фрезой; главное движение, вращательное, придается инструменту, движение подачи, прямолинейное, придается заготовке в направлении любой из координатных осей.

Поверхность называется линейчатой , если ее можно описать движением прямой (образующей) по некоторой линии (направляющей). Она представляет собой совокупность прямых, зависящих от одного параметра.

Фреза – цилиндрический многозубый инструмент с зубьями на торце и/или образующей.

Рассмотрим схемы обработки поверхностей на универсальных горизонтально-фрезерном (ГФС; имеет горизонтальную ось вращения фрезы) и вертикально-фрезерном (ВФС; имеет вертикальную ось вращения фрезы) станках.

Горизонтальные плоскости фрезеруют цилиндрическими фрезами на ГФС (рис. 10.40, а ) или торцевыми фрезами на ВФС (рис. 10.41, а ). Горизонтальные плоскости чаще обрабатывают торцевыми насадными фрезами, так как они имеют более жесткое закрепление и обеспечивают плавное, безвибрационное резание. При большой ширине обрабатываемой плоскости используют торцевые фрезы и обработку ведут в несколько последовательных рабочих ходов . Узкие горизонтальные плоскости удобно обрабатывать концевыми фрезами.

Вертикальные плоскости на ГФС обрабатывают торцевыми насадными фрезами (рис. 10.40, б ) или фрезерными головками, а на ВФС – концевыми фрезами (рис. 10.41, б ). Большие по высоте вертикальные плоскости удобнее обрабатывать на ГФС с использованием вертикальной подачи. Обработку небольших по высоте вертикальных плоскостей можно обрабатывать на ГФС с помощью концевых или дисковых фрез. Наклонные плоскости небольшой ширины обрабатывают на ГФС одноугловой фрезой (рис. 10.40, в ).

Широкие наклонные плоскости обрабатывают на ВФС с поворотом шпиндельной головки (рис. 10.41, в ) торцевой насадной или концевыми фрезами. Одновременную обработку нескольких поверхностей (вертикальных, горизонтальных и наклонных) ведут на ГФС (рис. 10.40, г ), установив на оправку набор фрез.

Горизонтальные уступы и пазы обрабатывают дисковыми односторонними (рис. 10.40, д ) и трехсторонними (рис. 10.42, а ) фрезами на ГФС или концевыми фрезами (рис. 10.41, г ; 10.42, б ) на ВФС. Фасонные пазы с криволинейной образующей обрабатывают на ГФС фасонными дисковыми фрезами (рис. 10.42, в ). Пазы типа «ласточкин хвост» или Т-образные обрабатывают на ВФС (рис. 10.42, г , д ). Вначале концевой фрезой получают прямоугольный паз, затем используют концевую одноугловую фрезу или специальную концевую фрезу для Т-образных пазов. Шпоночные пазы для сегментных шпонок фрезеруют на ГФС дисковой трехсторонней фрезой (рис. 10.42, е ), для прямоугольных шпонок – на ВФС концевой фрезой (рис. 10.42, ж ).


Рис. 10.40. Обработка плоскостей на ГФС: а – горизонтальных; б – вертикальных; в – наклонных; г – нескольких плоскостей одновременно; д – уступов

Рис. 10.41. Обработка плоскостей на ВФС: а – горизонтальных; б – вертикальных; в – наклонных; г – уступов

Рис. 10.42. Фрезерование пазов: а , б – прямоугольных; в – полукруглых; г – типа «ласточкин хвост»; д – Т-образных; е , ж – шпоночных

Рис. 10.43. Фрезерование фасонных поверхностей: а , б – методом копирования цилиндрической и концевой (пальцевой) фрезой соответственно; в – по копиру

Фасонные поверхности обрабатывают методом копирования с использованием фасонных цилиндрических (рис. 10.43, а ), дисковых или концевых (рис. 10.43, б ) фрез, по копиру на специальных копировальных фрезерных станках (рис. 10.43, в ) и методом обката на специальных станках.

Технологический процесс фрезерной обработки должен обеспечить возможность обработать на данном станке при заданных условиях работы наибольшее количество деталей высокого качества при возможно лучшем использовании оборудования и инструмента, а также с наименьшими затратами.
Технологический процесс должен быть построен в наиболее целесообразной последовательности операций и переходов с использованием наиболее рациональных методов фрезерования.
Последовательность обработки зависит от многих факторов: характера фрезерных операций, размеров и формы деталей, технических условий на взаимное расположение отдельных поверхностей, наличного парка оборудования и т. д. Однако в большинстве случаев последовательность обработки зависит от выбора установочных баз.

Выбор установочных баз

Порядок обработки детали зависит в первую очередь от того, какие поверхности выбираются в качестве установочных баз в процессе обработки. Поэтому установочные базы должны намечаться заранее, до начала обработки.
Различают следующие основные случаи выбора установочных баз:
1. Подлежащая обработке заготовка не имеет предварительно обработанных поверхностей. Тогда базировку приходится вести по черной поверхности заготовки (черновая база). При этом на первой установке нужно обработать ту черную поверхность, которая намечена в качестве установочной базы для последующей обработки других поверхностей, т. е. подготовить чистовую установочную базу для следующих установок.
Так, мы поступали при обработке прямоугольного бруска (см. рис. 101). За базу при первой установке была принята черная поверхность заготовки. Это позволило обработать широкую плоскость 1 , которая в дальнейшем служила чистовой установочной базой для последующих установок.
2. Подлежащая обработке на данной операции заготовка имеет плоскости, обработанные на предыдущих операциях. В этом случае базировка производится по предварительно обработанным поверхностям.
Так, для фрезерования призмы (см. рис. 147) заготовкой является прямоугольный брусок, профрезерованный начисто по всем граням. В качестве базы для обработки этого бруска могут быть приняты две любые грани. При фрезеровании пазов а и б за базу принимается грань 1 (рис. 344). При фрезеровании пазов в и г грань 1 уже не может служить базой, поэтому принимается в качестве новой базы грань 2 (рис 345).




3. Подлежащая обработке на данной операции заготовка имеет наружные или внутренние поверхности вращения, обработанные на предыдущих операциях. В этом случае базировку производят по этим поверхностям.
Так, при обработке контурного шаблона (см. рис. 161) в качестве установочной базы было принято центральное отверстие диаметром 30 мм ; при фрезеровании квадрата (см. рис. 210) в качестве установочной базы были приняты центровые отверстия (центры); при фрезеровании граней гайки (см. рис. 213) установочной базой служило отверстие диаметром 11,7 мм ; при фрезеровании торцовых пазов в валике (рис. 215) установочной базой служила наружная обточенная поверхность диаметром 34 мм и т. д.

Выбор методов фрезерования

В зависимости от количества и порядка закрепления обрабатываемых заготовок фрезерование можно производить по следующим методам.
Фрезерование по одной заготовке (рис. 346, а) применяется главным образом в единичном производстве или при обработке заготовок крупных размеров, когда на столе станка или в приспособлении нельзя закрепить больше одной заготовки.


При последовательном методе фрезерования одна фреза или набор фрез обрабатывает заготовки, последовательно закрепленные в тисках или многоместных приспособлениях.
Последовательное фрезерование можно производить враздвижку , когда заготовки закрепляются последовательно на некотором расстоянии друг от друга, как показано на рис. 346, б. Для уменьшения потерь на холостой пробег фрезы современные фрезерные станки имеют возможность настройки перемещений стола по принципу чередующейся подачи (см. рис. 291).
Более производительным способом последовательного фрезерования является фрезерование заготовок, установленных пакетом (см. рис. 214, б). При этом способе фрезерования потери на холостой пробег фрезы в промежутках между заготовками исключены, так как они прилегают друг к другу. Поэтому, если условия обработки и конфигурация заготовок позволяют, то всегда выгодно закреплять заготовки пакетом.
При параллельном методе фрезерования две или несколько заготовок, закрепленные в тисках или многоместном приспособлении, обрабатываются одновременно одной фрезой или набором фрез (рис. 346, в).
При параллельном методе фрезерования машинное время сокращается во столько раз, сколько установлено заготовок в ряд. Параллельный метод применяется главным образом в условиях изготовления больших партий малогабаритных заготовок. На рис. 347 показана установка четырех винтов для параллельного фрезерования их головок четырьмя парами дисковых трехсторонних фрез.


Параллельно - последовательным методом фрезерования называют сочетание параллельного и последовательного методов фрезерования. При этом методе можно добиться наибольшей производительности, что часто используют фрезеровщики-новаторы производства.
На рис. 348 показано производительное приспособление для фрезерования шлицев корончатых гаек. Оно состоит из основания 1 и двух круглых плит 2 и 3 .

Основание 1 закрепляют пазовыми болтами на столе горизонтально-фрезерного станка. На основание устанавливают и закрепляют четырьмя откидными болтами нижнюю 2 и верхнюю 3 плиты в сборе. Верхняя плита 3 соединена с нижней 2 семью болтами 4 с быстросъемными шайбами 7 .
В нижней плите имеется 54 нарезанных отверстия, в которые ввинчены зажимы 8 с внутренним шестигранником. На верхнем конце зажимы имеют круглый диск, свободно входящий в отверстие в верхней плите и подпирающий заготовки гаек. Таких отверстий в верхней плите тоже 54. В них закладывают заготовки гаек при опрокинутом положении верхней плиты. На нее накладывают сверху нижнюю плиту, фиксируя ее двумя штифтами, и затягивают семь болтов 4 и все 54 зажима. Затем переворачивают комплект плит с заложенными в них 54 заготовками и устанавливают его на основание, закрепляя четырьмя откидными болтами.
На верхней плоскости верхней плиты 3 имеется система канавок, пересекающихся между собой под углом 60°. Ширина канавок (3,5 мм ) соответствует ширине шлица в гайке.
Фрезерование комплекта заложенных в приспособление 54 гаек производится набором девяти дисковых фрез, установленных на равных расстояниях на оправке. После первого прохода обе верхние плиты поворачивают на 60°, производят второй проход и таким же образом третий проход.
При двух комплектах плит заполнение заготовками второго комплекта производят в процессе фрезерования шлицев в гайках первого комплекта плит, таким образом получается экономия вспомогательного времени.
При разработке технологического процесса фрезерной обработки партии одинаковых деталей необходимо стремиться к применению параллельно-последовательных методов обработки.

Оформление технологического процесса

Операция технологического процесса обработки детали заносятся в последовательном порядке в карту технологического процесса. Карта технологического процесса отличается от операционной карты тем, что по ней устанавливается процесс обработки детали по всем операциям.
В карте технологического процесса порядковые номера операций обозначаются римскими цифрами (I, II, III, IV и т. д.). Порядковые номера установок обозначаются русскими заглавными буквами (А, Б, В, Г и т. д.). Порядковые номера переходов обозначаются арабскими цифрами (1, 2, 3, 4 и т. д.).
Наименования установок и переходов записываются в форме приказа. Это подчеркивает строгую обязательность выполнения технологического процесса.
В графе «Наименование установок» указываются характер и способы закрепления заготовки, а также поверхности, которыми она касается установочного элемента, приспособления или поверхности стола. Например, в технологической карте установка, изображенная на рис. 349, формулируется так: «Установить заготовку в тиски фрезерованной поверхностью 1 к неподвижной губке и закрепить».

Лучшие статьи по теме