Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Фундаменты 
  • Способы наблюдения за трещинами в каменных и бетонных конструкциях. Методы контроля трещин в зданиях Наблюдение за трещинами

Способы наблюдения за трещинами в каменных и бетонных конструкциях. Методы контроля трещин в зданиях Наблюдение за трещинами

Мы продолжаем серию публикаций методических рекомендаций по вопросам мониторинга зданий с трещинами. В этой статье будут приведен фрагмент документа «Пособие по обследованию строительных конструкций зданий», разработанного , в редакции 2004 года (далее по тексту Пособие). Это одно из самых подробных описаний процесса наблюдения за трещинами, выпущенных за последнее десятилетие. Пособие предназначено для специалистов по обследованию зданий. Однако, часть, касающаяся работы с трещинами, может быть использована и работниками других профессий, в чьи компетенции входит контроль технического состояния зданий и мониторинг деформаций строительных конструкций, например, специалистами по эксплуатации зданий. Далее приводится текст документа и наши комментарии.

5.3. Методы и средства наблюдения за трещинами

5.3.1. При обследовании строительных конструкций наиболее ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития. Они могут быть вызваны самыми разными причинами и иметь различные последствия.

По степени опасности для несущих и ограждающих конструкций трещины можно разделить на три группы.

  1. Трещины неопасные, ухудшающие только качество лицевой поверхности.
  2. Опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью.
  3. Трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, однако еще не способствуют полному их разрушению.

Следует отметить, что на данный момент отсутствует общепринятая классификация трещин в строительных конструкциях. В разных документах наблюдается различный подход к данному вопросу. При осмотрах и обследованиях зданий оценка степени опасности трещин безусловно важна и является одним из ключевых моментов. Предлагаемое деление трещин на три группы по степени их опасности вполне приемлемо. Однако, не совсем понятны критерии, по которым следует относить трещины к той или иной группе. На степень опасности трещины влияет множество факторов — конструктивные особенности здания, место расположения и параметры трещины, нагруженность и характеристики поврежденной конструкции, причины деформаций и интенсивность их развития, а также многие другие. Для сбора и анализа всей этой информации требуется проведение обследования. Но для обеспечения безопасности важно оценить трещину сразу же после ее выявления. Для этого делается предварительная оценка, точность которой, в условиях недостаточности информации, в большей степени зависит от опыта и знаний специалиста. По результатам предварительной оценки должны быть назначены дальнейшие мероприятия по обеспечению безопасности и получению дополнительных данных, необходимых для уточнения состояния конструкций. В том числе, устанавливается наблюдение за трещинами и разрабатывается состав и график контрольных осмотров.

5.3.2. В металлических конструкциях появление трещин в большинстве случаев определяется явлениями усталостного характера, что часто наблюдается в подкрановых балках и других конструкциях, подверженных переменным динамическим нагрузкам.

Возникновение трещин в железобетонных или каменных конструкциях определяется локальными перенапряжениями, увлажнением бетона и расклинивающим действием льда в порах материала, коррозией арматуры и действием многих труднопрогнозируемых факторов.

5.3.3. Следует различать трещины, появление которых вызвано напряжениями, проявившимися в железобетонных конструкциях в процессе изготовления, транспортировки и монтажа, и трещины, обусловленные эксплуатационными нагрузками и воздействием окружающей среды.

В железобетонных конструкциях к трещинам, появившимся в доэксплуатационный период, относятся: усадочные трещины, вызванные быстрым высыханием поверхностного слоя бетона и сокращением объема, а также трещины от набухания бетона; трещины, вызванные неравномерным охлаждением бетона; трещины, вызванные большим гидратационным нагревом при твердении бетона в массивных конструкциях; трещины технологического происхождения, возникшие в сборных железобетонных элементах в процессе изготовления, транспортировки и монтажа.

Трещины, появившиеся в эксплуатационный период, разделяются на следующие виды: трещины, возникшие в результате температурных деформаций из-за нарушений требований устройства температурных швов или неправильности расчета статически неопределимой системы на температурные воздействия; трещины, вызванные неравномерностью осадок грунтов основания; трещины, обусловленные силовыми воздействиями, превышающими способность железобетонных элементов воспринимать растягивающие напряжения.

5.3.4. При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций конструкций и степень их опасности для дальнейшей эксплуатации.

Наблюдение за развитием трещин проводится по графику, который в каждом отдельном случае составляется в зависимости от конкретных условий.

Хотелось бы отметить, что далее по тексту приводятся конкретные данные по периодичности наблюдения за маяками. Однако, следует относится к ним именно как к рекомендуемым. При назначении сроков очередного осмотра трещин каждая ситуация должна рассматриваться индивидуально, а график наблюдений может корректироваться в зависимости от результатов очередного осмотра. В первую очередь это зависит от интенсивности деформационных процессов и «давности» появления трещины. Чем свежее трещина, и чем быстрее она развивается, тем более пристального внимания требует.

5.3.5. Трещины выявляются путем осмотра поверхностей конструкций, а также выборочного снятия с конструкций защитных или отделочных покрытий.

Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.

5.3.6. На каждой трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины.

При наблюдениях за развитием трещин по длине концы трещин во время каждого осмотра фиксируются поперечными штрихами, нанесенными краской или острым инструментом на поверхности конструкции. Рядом с каждым штрихом проставляют дату осмотра.

Расположение трещин схематично наносят на чертежи общего вида развертки стен здания, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются, и по результатам осмотра составляется акт, в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков.

Здесь необходимо пояснить, что разрываться может только гипсовый (цементный) маяк. Для маяков других конструкций аналогичным сигналом будет отклонение от начального значения (положения). Также необходимо уточнить, что под «графиком развития, раскрытия трещины» понимается схема, на которой в графическом виде фиксируется изменение трещины во времени (пример приведен далее на рисунке 5.14). А под «графиком наблюдения» понимается именно назначенная периодичность проведения контрольных осмотров. Печатные формы упомянутых акта и графика развития трещин можно скачать на нашем сайте.

Рис. 5.5. Приборы для измерения раскрытия трещин а - отсчетный микроскоп МПБ-2, б - измерение ширины раскрытия трещины лупой: 1 - трещина; 2 - деление шкалы лупы; в - щуп

5.3.7. Ширину раскрытия трещин обычно определяют с помощью микроскопа МПБ-2 с ценой деления 0,02 мм, пределом измерения 6,5 мм и микроскопа МИР-2 с пределами измерений от 0,015 до 0,6 мм, а также лупы с масштабным делением (лупы Бринеля) (рис. 5.5) или других приборов и инструментов, обеспечивающих точность измерений не ниже 0,1 мм.

Глубину трещин устанавливают, применяя иглы и проволочные щупы, а также при помощи ультразвуковых приборов типа УКБ-1М, бетон-3М, УК-10П и др. Схема определения глубины трещин ультразвуковыми методами указана на рис. 5.6.

5.3.8. При применении ультразвукового метода глубина трещины устанавливается по изменению времени прохождения импульсов как при сквозном прозвучивании, так и методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношений:

где h — глубина трещины (см. рис. 5.6);

V — скорость распространения ультразвука на участке без трещин, мк/с;

ta, te — время прохождения ультразвука на участке без трещины и с трещиной, с;

а — база измерения для обоих участков, см.

Рис. 5.6. Определение глубины трещин в конструкции
1 — излучатель; 2 — приемник

Здесь можно отметить, что инструменты и приборы, используемые при определении параметров трещины, следует выбирать исходя из конкретных условий, в которых предстоит проводить измерения, а также с учетом материала конструкций и величины повреждений. Например, если трещина в кирпичной кладке имеет ширину раскрытия более 20 мм, то применить большинство измерительных луп и микроскопов не получится. Кроме того, возможно, что в этом случае и точность более чем 0,1 мм не потребуется. Тем не менее, важно всегда стремиться к выполнению измерений с наибольшей точностью. Во многих источниках, также как и в рассматриваемом, принято, что наблюдения за шириной раскрытия трещин следует выполнять с точностью не ниже 0,1 мм. Добиться такой точности, а также сопоставимости результатов при многократных замерах через определенные промежутки времени, можно только в случае, если места замеров четко обозначены непосредственно на конструкции. Для этого можно наносить засечки перпендикулярно трещине в местах замеров, либо закреплять фиксирующие края трещины приспособления.

5.3.9. Важным средством в оценке деформации и развития трещин являются маяки: они позволяют установить качественную картину деформации и их величину.

5.3.10. Маяк представляет собой пластинку длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 м, из гипса или цементно-песчаного раствора, наложенную поперек трещины, или две стеклянные или металлические пластинки, с закрепленным одним концом каждая по разные стороны трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствуют о развитии деформаций.

Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах (особенно при их установке на горизонтальную или наклонную поверхность). В этом случае штрабы заполняются гипсовым или цементно-песчаным раствором.

Здесь имеет смысл привести выдержку из другого документа

ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений

3 Термины и определения

3.34 маяк, щелемер: Приспособление для наблюдения за развитием трещин: гипсовая или алебастровая плитка, прикрепляемая к обоим краям трещины на стене; две стеклянные или плексигласовые пластинки, имеющие риски для измерения величины раскрытия трещины и др.

10 Наблюдение за трещинами

10.3 При наблюдениях за раскрытием трещин по ширине следует использовать измерительные или фиксирующие устройства, прикрепляемые к обеим сторонам трещины: маяки, щелемеры, рядом с которыми проставляют их номера и дату установки.

Т.е. по большому счету маяк — это любое устройство, закрепляемое на конструкции в месте расположения трещины, и позволяющее отслеживать изменение ее параметров (ширины, сдвига и т.п.). Далее по тексту Пособия приводятся и другие виды маяков, неуказанные в п. 5.3.10. Соответственно описание маяков в этом пункте Пособия следует считать только одним из примеров.

5.3.11. Осмотр маяков производится через неделю после их установления, а затем один раз в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

5.3.12. Ширина раскрытия трещин в процессе наблюдения измеряется при помощи щелемеров или трещиномеров. Конструкция щелемера или трещиномера может быть различной в зависимости от ширины трещины или шва между элементами, вида и условий эксплуатации конструкций.

Возникает вопрос: «Чем щелемер и трещиномер отличаются от маяка?» . Четких определений, по которым можно понять различие этих терминов, нам найти не удалось. Назначение, судя по приведенным в документе данным, у них идентичное. Принцип работы может отличаться у разных видов маяков, также как и у щелемеров. Скорее всего, функциональность и возможности для работы с трещинами также не зависят от названия. Хотелось бы все же отделить термин «трещиномер», т.к. более распространено его использование для обозначения электронных приборов, с функциями поиска и определения параметров трещин. Если посмотреть другие методические и нормативные документы данной и смежных тематик, то можно встретить использование терминов «маяк» и «щелемер» для обозначения устройств, аналогичных описываемым в данном Пособии. Причем, прослеживается следующая тенденция — «щелемер» чаще используется в документах, связанных с гидротехническими сооружениями. Возможно, что именно область использования повлияла на распространение названия данных инструментов. Исходя из этого, можно считать, что термины «маяк» и «щелемер» во многом схожи по своему значению. На данный момент это подтверждается и определением из ГОСТ, которое мы приводили в предыдущем комментарии. Надеемся, что в будущем использование терминологии для описания средств наблюдения за трещинами получит большую упорядоченность, а указанные понятия будут разграничены по ясным критериям. Но в данном обзоре мы не будем разделять щелемер и маяк, а предположим, что это в большей степени схожие устройства.

У нас есть дополнительная информация о разграничении понятий маяк, щелемер, трещиномер, деформометр, используемых применительно к средствам наблюдения за трещинами / швами / стыками и другими подобными элементами и повреждениями строительных конструкций зданий и сооружений.

Рис. 1. Порядок установки маяка.

На трещинах установить гипсовые или цементные маяки и организовать наблюдение с регистрацией результатов в определенные промежутки времени в специальном журнале. Размеры маяков: длина 250¸300 мм, ширина 70¸100 мм, толщина 20¸30 мм.

Маяки устанавливаются поперек трещин в местах их наибольшего развития и надежно закрепляются на несущей части стен по обеим сторонам трещин (см. чертеж). Маяки ставят в очищенных от штукатурки местах, позволяющих вести ежедневные наблюдения.

Каждому маяку присваивают номер и указывают дату его установки. Если в течение срока наблюдения на маяке не появится трещина, значит, неравномерная осадка стен и образование в них трещин прекратились и трещину после расчистки можно заделать раствором. Если маяки разрушаются, значит деформация стен продолжается. В этом случае журнал с результатами наблюдений направить на изучение для принятия решения. В сырых местах не допускается ставить гипсовые маяки - в этом случае устанавливать маяки из цементного раствора.

Наблюдения

за трещинами

Наблюдения за развитием трещин в стенах во времени осуществляются с помощью гипсовых, стеклянных или пластинчатых маяков.

1 - трещина; 2 - маяк гипсовый или из стекла; 3 - металлическая пластинка; 4 - риски;

5 - гвоздь

Ширина раскрытия трещин измеряется с помощью: - градуированных луп и микроскопов (МИР-2, МПБ-2) с 2,5-24-кратным увеличением; - целлулоидных или бумажных трафаретов, с нанесенными на них линиями разной толщины от 0,05 до 2 мм , путем совмещения линий с краями трещины; - масштабных линеек при раскрытии трещин более 2 мм (точность измерений ± 0,3 мм ).

При длительных наблюдениях ширина раскрытия трещин за рассматриваемый период определяется с помощью переносных индикаторов с ценой деления 0,01 мм и штангенциркулей с ценой деления 0,1 мм. Величина раскрытия принимается равной разности двух измерений расстояния между штырями (реперами) с центрирующим устройством, заделанными в конструкцию по обе стороны трещины.

Глубина развития несквозных (слепых) трещин hтр определяется: - по следу трещины на поверхности керна, высверленного из тела конструкции; - с помощью стальных калиброванных щупов различной толщины по формуле:

+ 5 мм, (2)

где:
dн - раскрытие трещины снаружи в мм (среднее из трех измерений);

dщ, hщ - толщина щупа и глубина погружения щупа в трещину в мм без усилия (среднее из трех измерений при смещении щупа по трещине на 1- 2 см);

С помощью ультразвуковых приборов (УКБ-1М; УК-10П; УЗП-62 и др.) в соответствии с указаниями РТУ УССР 92-62.

Глубина трещины определяется по разности времени прохождения ультразвуковых импульсов в МКС на длине базы а - с трещиной и без трещины по формуле:

, (3)

где: tl, ta - время прохождения ультразвука соответственно на участке

с трещиной и без трещины.

Маяки нумеруют и пишут на них дату установки. Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются (не реже одного раза в 2-ое суток), и по результатам осмотра составляется акт (журнал), в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков (в журнале (акте) наблюдений обязательно должно быть зафиксировано - место расположения маяка, его номер, дату установки, первоначальную ширину трещины).

В случае деформации (разрыва) маяка рядом с ним устанавливается новый, которому присваивается тот же номер, но с индексом. Маяки, на которых появились трещины, не удаляют до окончания наблюдений.

Если в течение 30 суток изменение размеров трещин не будет

фиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

ЖУРНАЛ НАБЛЮДЕНИЯ ЗА МАЯКАМИ

  • Номер маяка
  • Дата установки маяка
  • Дата осмотра маяка
  • Дата раскрытия трещин
    (величина раскрытия)

2.2.8. При обнаружении в строительных конструкциях тре­ щин, изломов и других внешних признаков поврежде­ний за этими конструкциями должно быть установлено наблюдение с использованием маяков и с помощью ин­струментальных измерений. Сведения об обнаружен­ных дефектах должны заноситься в журнал тех­нического состояния зданий и сооружений с установ­лением сроков устранения выявленных дефектов.

По своим свойствам и характеристикам трещины в железобетонных и бетонных конструкциях могут быть следующие: стабилизировавшиеся (во времени) и неста­билизировавшиеся, раскрытые и сквозные, волосяные (до 0,1 мм), мелкие (до 0,3 мм), развитые (0,3 - 0,5 мм) и большие, аварийные, глубинные, поверхностные, верти­кальные и горизонтальные, одиночные, параллельные, пе­ресекающиеся и в виде сетки.

Для наблюдения за развитием трещин в стенах, строи­тельных конструкциях и фундаментах оборудования ис­пользуются маяки (рисунок 2.2.5), устанавливаемые в мес­тах, позволяющих вести повседневные наблюдения за ними, Если на конструкции имеется слой штукатурки в местах появления трещин, его следует удалить и прове­рить наличие трещин в теле самой конструкции. Количе­ство маяков принимается из расчета 1 маяк на 2 - 3 м дли­ны трещин. Каждому маяку присваивается номер, указы­вается дата его установки. Эскиз трещин, данные их раз­вития и установки маяков должны быть приведены в тех­ническом журнале осмотра строительных конструкций.

а - гипсовый; б - металлический; в - конструкции Белякова; 1 - трещина; 2 - штукатурка; 3 - стена наблюдаемого объек­та; 4 - миллиметровые деления на пластине маяка; 5 - металли­ческие шпильки для фиксирования относительного положения пластин

Наблюдения за трещинами проводятся в течение 20 - 30 сут, если за это время маяки окажутся целыми, а длина тре­щин не возрастет, то их развитие следует считать закон­ченным. Должны быть установлены с помощью маяков и щелемеров наблюдения за температурно-осадочными шва­ми зданий, узлами примыкания эстакад топливоподач к главному корпусу и другим зданиям и сооружениям. Если раскрытие швов и перемещения в узлах сопряжений не связаны с сезонными деформациями конструкций или не соответствуют им, то должны быть проверены осадки фун­даментов зданий и сооружений, на которых обнаружены эти несоответствия,

Степень ослабления элементов конструкций вследствие механического (надрезов, отверстий, пропилов и т.п., не предусмотренных проектом), химического, электрохими­ческого, биологического и прочих воздействий должна быть оценена по результатам измерений сечений. Необходи­мость в определении прочности возникает в случаях, ког­да появляются внешние признаки нарушения цельности конструкций (прогибы, выпучивания, трещины и т.д.). Для определения прочности бетона с помощью приборов сле­дует пользоваться методами, изложенными в .

Трещинами в стенах жилых домов никого не удивишь — их мы видим достаточно часто. Скорее удивление вызовет установленный на трещине маяк — приспособление для контроля ширины раскрытия трещины. Однако, все должно быть наоборот. Трещина без маяка должна вызывать вопросы и беспокойство. Почему важно использовать маяки для трещин и зачем это делается? Сегодня мы озвучим несколько причин по которым необходимо контролировать развитие трещин при помощи маяков.

Требования законодательства

Технический регламент о безопасности зданий и сооружений (Федеральный закон от 30 декабря 2009 г. N 384-ФЗ) требует обеспечивать безопасность зданий в процессе их эксплуатации, в том числе и посредством мониторинга состояния строительных конструкций. Маяки на трещины в жилых зданиях являются таким средством мониторинга. В соответствии с ГОСТ 53778-2010 (носящим обязательный характер по Распоряжению №1047) эксплуатация зданий, имеющих конструкции в аварийном и ограниченно работоспособном состоянии, не допускается без выполнения мониторинга. В отношении жилых зданий есть конкретные требования, по которым маяки должны устанавливаться при наличии трещин. На это прямо указывает МДК 2-03.2003 Правила и нормы технической эксплуатации жилищного фонда (далее по тексту Правила), утвержденный постановлением Госстроя РФ от 27 сентября 2003 г. № 170.

Федеральный закон от 30 декабря 2009 г. N 384-ФЗ Статья 36. Требования к обеспечению безопасности зданий и сооружений в процессе эксплуатации

1. Безопасность здания или сооружения в процессе эксплуатации должна обеспечиваться посредством технического обслуживания, периодических осмотров и контрольных проверок и (или) мониторинга состояния основания, строительных конструкций и систем инженерно-технического обеспечения, а также посредством текущих ремонтов здания или сооружения.

2. Параметры и другие характеристики строительных конструкций и систем инженерно-технического обеспечения в процессе эксплуатации здания или сооружения должны соответствовать требованиям проектной документации. Указанное соответствие должно поддерживаться посредством технического обслуживания и подтверждаться в ходе периодических осмотров и контрольных проверок и (или) мониторинга состояния основания, строительных конструкций и систем инженерно-технического обеспечения, проводимых в соответствии с законодательством Российской Федерации.

Требования контролирующих органов

Государственная жилищная инспекция (ГЖИ), при наличии нарушений Правил, выписывает предписания об устранении этих нарушений и выписывает административные штрафы. При проверках, инспектор не всегда обращает внимание на отсутствие маяков на трещинах. Но в случае наличия жалобы от жильцов по этому вопросу, он не сможет обойти указание Правил и требование по установке маяков будет присутствовать в предписании. Практически 100% судебных разбирательств, где управляющие компании пытаются оспорить выписанный по причине отсутствия маяков на трещине штраф, заканчиваются вынесением решения в пользу ГЖИ. В решениях судов по этому поводу обычно есть ссылки на Технический регламент и Правила МДК (указанные выше).

МДК 2-03.2003 Правила и нормы технической эксплуатации жилищного фонда (Постановление Госстроя РФ от 27 сентября 2003 г. № 170)

4.2.1.14. Организации по обслуживанию жилищного фонда при обнаружении трещин, вызвавших повреждение кирпичных стен, панелей (блоков), отклонения стен от вертикали, их выпучивание и просадку на отдельных участках, а также в местах заделки перекрытий, должны организовывать систематическое наблюдение за ними с помощью маяков или другим способом. Если будет установлено, что деформации увеличиваются, следует принять срочные меры по обеспечению безопасности людей и предупреждению дальнейшего развития деформаций. Стабилизирующиеся трещины следует заделывать.

Обеспечение безопасной эксплуатации

Контроль развития трещин при помощи маяков является достаточно эффективной мерой обеспечения безопасности эксплуатируемых жилых зданий. Этот простой и точный (при использовании маяков для точных наблюдений) способ доступен для использования всем специалистам по эксплуатации зданий. Он не требует специальной подготовки, обучения, сложных инструментов и дорогостоящего оборудования. При правильной установке и систематическом снятии показаний, своевременно выявить ухудшение технического состояния здания не представляет труда. Именно высокая эффективность и простота использования маяков позволили широко рекомендовать их массовое применение практически во всей специализированной технической и нормативной литературе. При отсутствии возможности финансирования ремонтных работ, использование маяков — единственный экономичный способ обеспечения безопасной эксплуатации зданий.

Выявление причин появления трещин

Крайне важным аспектом использования маяков является возможность установления причин появления трещин в конструкциях зданий. Конечно, это не всегда возможно, но низкая стоимость этого способа исследований поведения конструкций здания позволяет использовать маяки для таких целей достаточно широко. При выполнении наблюдений с помощью маяков ведется специальный журнал и графики, которые позволяют проанализировать поведение трещин в конструкциях в зависимости от внешних факторов — температура, динамические воздействия, сезонность, обводнение грунтов и т.п. Такие наблюдения позволяют выявить влияние на деформацию конструкций, например:

  • Морозного пучения грунтов
  • Просадки от обводнения грунтов
  • Изменения нагрузки на конструкции
  • Температурных воздействий

Выполнение качественного ремонта

Качественный ремонт трещин невыполним без выяснения существующей динамики изменения ширины раскрытия трещины. Наверное, многие сталкивались с замазанными раствором трещинами, раскрывшимися повторно по тому же месту. Применение тех или иных способов ремонта трещин зависит от величины ее раскрытия, места расположения и подверженности изменению от различных факторов (температура, изменение нагрузки, динамические воздействия, сезонные изменения и т.п.). Только получив достаточно сведений о поведении трещины можно принять правильное решение в отношении ремонта конструкций здания. Во многих случаях эти сведения позволяют получить существенную экономию на ремонтных мероприятиях и обеспечить долгосрочное качество восстановления работоспособности конструкций.

Контроль влияния нового строительства на существующие здания

Конфликты жильцов домов, расположенных вблизи строящихся зданий, с застройщиками очень распространены. Основные претензии касаются того, что процесс строительства ухудшает техническое состояние существующих зданий — появляются новые трещины в несущих конструкциях, а старые трещины увеличиваются. Иногда такие претензии не обоснованы, но во многих случаях вполне законны. Как зафиксировать факт влияния нового строительства на окружающую застройку? Этот вопрос решают проектировщики еще во время проектирования — они должны выполнить соответствующие расчеты и по их результатам установить степень влияния и разработать компенсирующие мероприятия. Кроме того, проектом предусматриваются контрольные мероприятия по мониторингу окружающей застройки. Маяки, являясь средством мониторинга технического состояния зданий, позволяют установить изменение ширины раскрытия трещин. Они являются одним из обязательных инструментов контроля, их использование в подобных случаях предусмотрено ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений. В таком мониторинге заинтересованы и сами застройщики — их интерес заключается в опровержении необоснованных претензий жильцов. Ведь не редкость когда жители по незнанию, либо умышленно пытаются решить все свои существовавшие задолго до начала строительства проблемы с ветхим домом за счет застройщика.

Экономия средств

Выделять данный пункт не совсем правильно, так как каждая предыдущая причина тем или иным путем ведет в результате к экономии финансов. Например, как было сказано выше, соблюдая требования законодательства управляющая компания экономит на штрафах. А установив правильную причину образования трещин, удастся исключить неэффективные ремонтные мероприятия, что также сократит расходы. Однако, следует отметить важность правильной организации наблюдений за трещинами при помощи маяков. К этому вопросу следует подходить с всей ответственностью и пониманием. Существуют разработанные методики наблюдений, требования и ограничения в применении различных конструкций маяков, а также определенные правила, которые необходимо соблюдать в зависимости от целей наблюдения. Только качественно организованный мониторинг позволит решить стоящие перед службой эксплуатации здания задачи и при этом сэкономить финансы.

Лучшие статьи по теме