Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Крыша
  • Графические задачки. Графические задачи. Как решать графические задачи

Графические задачки. Графические задачи. Как решать графические задачи

Графические головоломки

  1. Соединить четыре точки тремя линиями, не отрывая руки и вернуться в исходную точку.

. .

  1. Соединить девять точек четырьмя линиями, не отрывая руки.

. . .

. . .

. . .

  1. Покажите, как нужно разрезать прямоугольник со строками 4 и 9 единиц на две равные части, чтобы при сложении их получился квадрат.
  1. Куб, окрашенный со всех сторон, распилили, как показано на рис.

а) Сколько получится кубиков

Совсем не окрашенных?

б) У скольких кубиков окрашенной

Будет одна грань?

в) У скольких кубиков будут

Окрашены две грани?

г) У скольких кубиков окрашенными

Будут три грани?

д) У скольких кубиков окрашенными

Будут четыре грани?

Ситуативные, конструкторские

И технологические задачи

Задача. Шарики трех размеров под действием собственного веса непрерывным потоком скатываются по наклонному лотку. Как осуществить непрерывную сортировку шариков на группы в зависимости от размеров?

Решение. Необходимо разработать конструкцию калибрующего приспособления.

Шарики, покинув лоток, скатываются далее по клиновидному калибру. В том месте, где ширина щели совпадает с диаметром шарика, он проваливается в соответствующий приемник.

Задача. Герои одного фантастического рассказа берут в полет вместо тысяч необходимых запчастей синтезатор-машину, умеющую делать все. При посадке на другую планету корабль повреждается. Нужно 10 одинаковых деталей для ремонта. Тут выясняется, что синтезатор делает все в одном экземпляре. Как найти выход из этой ситуации?

Решение. Необходимо заказать синтезатору произвести самого себя. Второй синтезатор выдает им еще один и т.д.

Ответы на графические головоломки.

1. . .

2. . . .

. . .

. . .

«Иллюстративные и графические задачи в школьном курсе физики».

Задача учителя помочь ученику разобраться в методах использования знаний для решения конкретных ситуаций. Структура и содержание ЕГЭ и ГИА постоянно меняется: увеличивается доля заданий, предполагающих обработку и представление информации в различных видах (таблицы, рисунки, схемы, диаграммы, графики), также увеличивается количество качественных вопросов, проверяющих знание физических величин, понимание явлений и смысл физических законов. Большая часть заданий ЕГЭ и ГИА по физике – это задания-графики, поэтому неудивительно, что меня заинтересовала тема «Решение графических и иллюстративных задач на уроках физики».

Часто на уроках физики, особенно в 7-9 классах, предлагаю учащимся задачи-иллюстрации.Обычно использую готовые задачи из журнала «Физика в школен» и книги Н.С.Бесчастной "Физика в рисунках" (приложение1). Последнее пособие включает задачи-рисунки по курсу физики VII- VIII классов, отражающие физические явления и их применение в технике и быту. Они развивают наблюдательность учащихся, учат их самостоятельно анализировать и объяснять окружающие явления, применяя знания, полученные на уроках. Но, с учетом современных требований, я думаю, педагогам будет проще использовать это замечательное пособие в современной форме, то есть, включая материал в слайды презентации, пусть даже и с не очень современными картинками (приложение 2). Как правило, к концу 7 класса учащиеся самостоятельно могут их составить и изобразить свои задачи-рисунки.

Кроме этого часто использую на уроках пособия Ушакова М.А., Ушакова К.М. Дидактические карточки-задания. 7,8,9, 10, 11 класс (приложение 3). При решении обычных текстовых задач ученики часто избегают анализа задачи и стараются найти соответствие между величинами, указанными в условии, и их обозначениями в формуле. Такой путь решения задач не способствует развитию физического мышления и переносу знаний в область практики, где ученик должен самостоятельно определить нужные величины для решения поставленной проблемы. К тому же, приводимые в текстовых задачах исходные данные являются своеобразной подсказкой при решении задачи. В заданиях, предложенных в данных пособиях, информация необходимая для решения проблемы, находится учеником самостоятельно путем анализа изображенной на рисунках ситуации (приложение 4).

Как показали наблюдения, использование наглядных задач на уроках физики поможет не только формированию практических умений и навыков учащихся, но и развитию их логического умения и наблюдательности.

Графическими принято называть задачи, в которых условия даны в графической форме, то есть в виде функциональных диаграмм. Большинство графических упражнений и задач можно разделить на несколько групп: "чтение" графиков, графические упражнения, решение задач графическим способом, графическое изображение результатов измерений. Применение каждой из них преследует определенные цели.

Анализ уже начерченных графиков открывает широкие методические возможности обучения:

1. С помощью графика можно наглядно представить функциональную зависимость физических величин, выяснить, в чем смысл прямой и обратной пропорциональности между ними, узнать, как быстро растет или падает численное значение одной физической величины в зависимости от изменения другой, когда он достигает наибольшего или наименьшего значения.

2. График дает возможность описать, как протекает тот или иной физический процесс, позволяет наглядно изобразить наиболее существенные стороны его, обратить внимание учащихся именно на то, что является наиболее важным в изучаемом явлении.

3. Чтение графиков может заключаться и в том, что по начерченному графику, изображающему физическую закономерность, записывается ее формула.

Графические упражнения могут состоять в следующем: вычерчивание графика по табличным данным, на основании одного графика построение другого, вычерчивание графика по формуле, выражающей физическую закономерность. Эти упражнения должны выработать у учащихся навыки черчения графиков и умения, прежде всего удобно выбирать ту или иную ось координат и масштаб так, чтобы добиться возможно большей точности построения графика, а затем и отсчета по нему, разумно ограничивая себя размерами чертежа. Следует обратить внимание учащихся на то, что по начерченному по точкам графику легко определить и промежуточные значения физических величин, не указанных в таблице. Наконец, при выполнении графических упражнений учащиеся убеждаются в том, что график, построенный по табличным данным, нагляднее, чем таблица, иллюстрирует выраженную ими зависимость между численными значениями физических величин. Пособия Ушакова М.А., Ушакова К.М. Дидактические карточки-задания. 7,8,9, 10, 11 класс содержат также большое количество графических задач (приложение5).

Преподавание физики непосредственно связано с проведение демонстрационного физического эксперимента и лабораторных работ. Лабораторные работы предусмотрены учебными программами по физике и являются обязательными. Одни только манипуляции с физическими приборами дают, конечно, навыки работы с ними, но не приучают к анализу отдельных измерений, к оценке погрешностей, а в ряде случаев даже не способствуют пониманию наиболее важных сторон явления, для уяснения которых была поставлена лабораторная работа. Между тем, пользуясь графиками, можно легко контролировать и улучшать наблюдения и измерения, например в тех случаях, когда экспериментальные данные не ложатся на заданной кривой. Если ход физического процесса, наблюдаемого в лабораторной работе, неизвестен, то график дает представление о нем и возможность выяснить, какая существует зависимость между физическими величинами. Наконец, график позволяет производить ряд дополнительных расчетов. Многие лабораторные измерения требуют такой обработки и в первую очередь представления результатов в виде графиков (приложение6).

Применение на уроках иллюстративных и графических задач способствует не только актуализации знаний учащихся, но и прочности их усвоения, а также совершенствованию практических умений и навыков учащихся. Работа по выработке алгоритмов решения графических и иллюстративных задач – совместная работа учителя и ученика, которая ведет к сформированности отдельных умений, имеющих прямое отношение к ключевым компетенциям, таких как: умение сравнивать, устанавливать причинно-следственные связи, классифицировать, анализировать, проводить аналогии, обобщать, доказывать, выделять главное, выдвигать гипотезу, синтезировать. Если учащийся является активным участником учебного процесса, то и ученик и учитель получают удовлетворение от работы и богатую информацию для развития творчества.

Приложение 1.

(электронная версия пособия представлена на сайте )

Приложение 2.

Который из спортсменов первым достигнет финиша при прочих равных условиях и почему?

Который из этих мальчиков действует правильно при оказании помощи тонущему?

Одинакова ли сила трения между колесами и рельсами при движении двух одинаковых цистерн?

В какой момент легче поднимать ведро из колодца?

Какой паре гусей теплее и почему?

Приложение 3.

Решение графических задач по физике

В графических задачах объектом исследования являются графики зависимости физических величин. Графики могут быть даны в условии задачи или их надо построить в процессе решения задачи. Чтобы успешно решать графические задачи, их нужно уметь «читать», видеть характер зависимости между величинами. Рассмотрим решение некоторых графических задач.

Задача №1 (Задание из варианта ЕГЭ)

На рисунке приведен график зависимости проекции скорости тела от времени.

Проекция ускорения тела в интервале времени от 12 до 16 с представлена графиком

Чтобы успешно и быстро решить подобное задание, нужно знать формулу ускоренияа = . Выделите указанный участок на графике. За 4 с скорость изменилась от значения -10 м/с до значения 0 м/с. Значит, а = (0м/с – (-10 м/с))/4 с = 2,5 м/с 2 .

а 0, значит верный ответ №4.

Задача №2 (Задание из варианта ЕГЭ)

На графике показана зависимость скорости тела от времени. Каков путь, пройденный телом к моменту времени t = 4 c?

1) 7 м; 2) 6 м; 3) 5 м; 4) 4 м.

Не нужно «искать» путь за 4 с движения по формулам кинематики. Это отнимает много времени. Найдём путь как площадь полученной трапеции. Верхнее основание трапеции это отрезок времени 4 с, нижнее – 2 с. Высота трапеции 2 м/с. Далее находим площадь:S = = 6 м.

Аналогично решаются некоторые задачи по термодинамике.

Задача №3

Рабочий цикл тепловой машины изображен на рисунке.

Дано: ν=1 моль, P 2 =6P 1 , T 4 =2T 1 , T 1 =300К

А? (за весь цикл)

Сначала найдем работу, совершенную в каждом процессе.

A 1-2 =0, A 3-4 =0,

A 2-3 =P 2 (V 2 –V 1),

A 4-1 =P 1 (V 1 –V 2). Работа за весь цикл равна:

A =A 2-3 +A 4-1 = P 2 (V 2 –V 1)+ P 1 (V 1 –V 2)=

P 2 (V 2 –V 1)- P 1 (V 2 –V 1)= (V 2 –V 1)(P 2 - P 1)=

= (V 2 –V 1)5 P 1 .

Запишем уравнение

Менделеева-Клапейрона.

    состояние (параметры в точке 1:P 1 ,V 1 ,T 1):

P 1 V 1 =νRT 1 ;

2 состояние (точка 4): P 1 V 2 =νRT 4 ;Решая систему уравнений, получим:

(V 2 –V 1)P 1 = νRT 4 - νRT 1 .

(V 2 –V 1)P 1 = νR(T 4 -T 1)= νRT 1 .

(V 2 –V 1)= νRT 1 /P 1 .

A= (V 2 –V 1)5P 1 =(νRT 1 /P 1) ∙5P 1 =5∙νRT 1 .

Найдём работу как площадь фигуры (прямоугольника): А = (P 2 – P 1)·(V 2 – V 1) = 5 P 1 · νRT 1 /P 1 , т.к. P 1 V 1 =νRT 1 ;P 1 V 2 =νRT 4 , откуда (V 2 –V 1)= νRT 1 /P 1 .

Задача №4

Сравните графики движения тел и определите, какое из них имеет наибольшую скорость.


Можно вычислить скорости движения всех тел и затем их сравнить. Но есть более быстрый способ выполнения этого задания. Чем больше угол наклона графика к оси времени, тем больше скорость тела. Это согласуется с формулой скорости: v = , т.к. отношение изменения координаты (х –х 0) к отрезку времени t показывает тангенс угла наклона графика движения к оси времени. Ответ очевиден: наибольшая скорость соответствует графику 2.

Семёнов Влад, Ивасиро Александр, ученики 9кл

Работа и презентация к решению графических задач. Были сделаны электронная игра и брошюра с задачами графического содержания

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

тезис Решение задач - это один из методов познания взаимосвязи законов природы. Решение задач - одно из важных средств повторения, закрепления и самопроверки знаний. Большинство физических задач мы решаем аналитическим способом, но в физике существуют задачи, которые требуют графического решения или в которых представлен график. В этих задачах необходимо использовать умение читать и анализировать график.

Актуальность темы. 1) Решение и анализ графических задач позволяют понять и запомнить основные законы и формулы по физике. 2) В КИМах для проведения ЕГЭ по физике и математике включены задания с графическим содержанием

Цель проекта: 1. Издать пособие для самостоятельного обучения решению графических задач. 2. Создать электронную игру. Задачи: 1. Отобрать графические задачи по различным темам. 2. Выяснить общую закономерность в решении графических задач.

Чтение графика Определение тепловых процессов Определение периода, амплитуды,… Определение Ек, Ер

В курсе физики 7-9 можно выделить законы, которые выражаются прямой зависимостью: Х(t), m (ρ) , I (q) , F упр(Δ x), F тр(N) , F (m), P (v) , p (F) p (h) , F а(V т) … , квадратичной зависимостью: E к =mv 2 /2 E р =CU 2 /2 E р =kx 2 /2

1 . С равнить ёмкость конденсаторов 2 .Какой из ниже указанных точек на диаграмме зависимости импульса тела от его массы соответствует минимальная скорость? Рассмотрим задачи 3 1 2

1 .В каком соотношении находятся между собой коэффициенты жесткости? 2. Покоящиеся в начальный момент тело, под действием постоянной силы перемещается так, как показано на рисунке. Определить величину проекции этой силы, если масса тела 3кг.

Обратите внимание, дана Р(V), а вопрос о Ек 1 .В каком из нижеприведенных соотношений находятся кинетические энергии трех тел различных масс в момент времени, когда их скорости одинаковы? 2 .По проекции перемещения от времени для тела массой 2кг, определить импульс тела в момент времени 2с. (Начальная скорость равна нулю.)

1 . Какой из нижеприведенных графиков наиболее точно соответствует зависимости проекции скорости от времени? (Начальная скорость равна нулю.) Е От одной зависимости к другой От графика к графику

2 . Тело массой 1кг изменяет свою проекцию скорости так, как показано на рисунке. Какой из нижеприведенных графиков зависимости проекции силы от времени, соответствует данному движению?

В курсе физики встречаются задачи с несколькими способами решения 1. Вычислить среднюю скорость 2. Определить, в каком соотношении между собой находятся проекции перемещения тел в момент времени, когда скорости тел одинаковы. 10 5 0 V,x ; м/с t,c I II III

Способ №1 10 5 0 V,x ; м/с t,c I II III a x= V 2x – V 1x t 2 – t 1 2 S=v 0 t+at 2 /2

Способ № 2 10 5 0 Vx ; м/с t,c I II III Sx= (V 0 x + Vx) t/ 2

Способ № 3 10 5 0 V,x ; м/с t,c I II III S 3 x= 1 *S S 2 x= 2 *S S 1 x: S 2 x: S 3 x= 3: 2: 1 S 1 x= 3 *S

Лишний слайд Очевидно, третий способ решения не требует промежуточных вычислений, поэтому более быстрый, а значит, более удобный. Выясним, в каких задачах возможно такое использование площади.

Анализ решённых задач показывает, что если произведение X и Y физическая величина, то она равна площади фигуры, ограниченной графиком. P=IU , A=Fs S=vt , V=at, v 0 =0 Δp/t=F , q=It Fa=V ρ g ,…. Х Y

1 .На рисунке приведен график зависимости проекции скорости некоторого тела от времени. Определить проекцию перемещения и путь этого тела за 5 с после начала движения. Vx ; м/с 3 0 -2 3 t ; с 5 А) 5 м, 13м В)13 м, 5м С)-1 м, 0м Д)9 м, -4м Е)15 м, 5м

0 4 6 8 1 2 3 4 5 6 t, c V, м/с 2 .Определите среднюю скорость велосипедиста за время t=6с. Весь путь на всё время S х =S трапеции 4,7м / с

Изменение импульса тела определяется площадью фигуры – прямоугольника, если сила постоянна, и прямоугольного треугольника, – если сила зависит от времени линейно. F t F t t F

3 .Наибольшее изменения импульса тела за 2с F t 1 .А 2 .Б 3 .С 1 С Б А Подсказка: Ft=S ф =  p

4 .Используя зависимость импульса тела от времени, определить равнодействующую силу действующую на это тело. А) 3Н B) 8Н C) 12Н D) 2Н E) 16 ловушка Р; кг* м/с 6 2 0 2 t ; c F= Δ p/t=(6-2)/2=2

Механическая работа Механическая работа постоянной по модулю и направлению силы численно равна площади прямоугольника. Механическая работа силы, величина которой зависит от модуля перемещения по линейному закону, численно равна площади прямоугольного треугольника. S 0 F F * s = A = S прямоуг S 0 F A = S пр.треуг

5 .На рисунке приведена зависимость силы действующей на тело от перемещения. Определить работу этой силы при перемещении тела на 20см. А) 20Дж. B) 8Дж. C) 0,8Дж. D) 40Дж. E) 0,4Дж. ловушка См в метры

Вычислить заряд 4 I,A 6 2 U,B 4 8 12 16 20 24 Вычислить сопротивление Вычислить А, Δ Ек за 4с Вычислить Ер пружины

6 .Под действием переменной силы, тело массой 1кг изменяет свою проекцию скорости с течением времени, так, как показано на рисунке. Определить работу равнодействующей этой силы за 8 секунд после начала движения А) 512Дж B) 128Дж C) 112Дж D) 64Дж E) 132Дж сложно A=FS , S= S (t=4c) =32м, F =ma, a =(v-v0)t=2 м / с 2

заключение В результате своей работы мы выпустили брошюру с задачами графического содержания для самостоятельного решения и создали электронную игру. Работа оказалась полезной для подготовки к ЕГЭ, а также для учащихся, интересующихся физикой. В перспективе рассмотрение других видов задач и их решение.

Функциональные зависимости физических величин. Общие способы, приёмы и правила подхода к решению графических задач проект « ГОВОРЯЩАЯ ЛИНИЯ » МБОУ СОШ №8 Южно-Сахалинск Выполнили: Семёнов Владислав, Ивасиро Александр ученики 9класса «А»

Источники информации. 1. Лукашик В.И, Иванова Е.В Сборник задач по физике. Москва «Просвещение» 2000 2. Степанова Г.И Сборник задач по физике М. Просвещение 1995 3. Рымкевич А.П Сборник задач по физике Москва. Просвещение 1988. 4. www.afportal.ru 5. А.В. Перышкин, Е.М Гутник Учебник по физике 7, 8, 9 класс. 6. материалы ГИА 7. С.Е. Каменецкий, В.П.Орехов Методика решения задач по физике в средней школе. М: Просвещение, 1987. 8. В.А. Балаш Задачи по физике и методы их решения. Москва «просвещение» 1983

Эксперты доказывают преимущество технического образования перед гуманитарным, доказывают, что Россия остро нуждается в высококвалифицированных инженерах и технических специалистах, и эта тенденция сохранится не только в 2014 году, но и на протяжении последующих лет. По мнению специалистов по подбору персонала, если страну будет ждать экономический рост в ближайшие годы (а предпосылки к этому есть), то весьма вероятно, что российская образовательная база "не потянет" многие отрасли (высокие технологии, промышленность). "На данный момент на рынке труда ощущается острый дефицит специалистов в области инженерно-технических специальностей, в области IT: программистов, разработчиков ПО. Востребованными остаются инженеры практически всех специализаций. В то же время рынок перенасыщен юристами, экономистами, журналистами, психологами", - говорит генеральный директор Кадрового агентства уникальных специалистов Екатерина Крупина. Аналитики, делая долгосрочные прогнозы до 2020 года, уверены: спрос на технические специальности будет с каждым годом стремительно расти. Актуальность проблемы. Следовательно, актуально качество подготовки к ЕГЭ по физике. Решающим является овладение методами решения физических задач. Разновидностью физических задач являются графические задачи. 1) Решение и анализ графических задач позволяют понять и запомнить основные законы и формулы по физике. 2) В КИМах для проведения ЕГЭ по физике включены задания с графическим содержанием.

Скачать работу с презентацией.

ЦЕЛЬ ПРОЕКТНОЙ РАБОТЫ:

Изучение типов графических задач, разновидностей, особенностей и методов решения.

ЗАДАЧИ РАБОТЫ:

1. Изучение литературы о графических заданиях; 2. Изучение материалов ЕГЭ (распространенность и уровень сложности графических заданий); 3. Исследование общего и особенного графических задач из разных разделов физики, степени сложности. 4. Изучение методов решения; 5. Проведение социологического опроса среди учащихся и учителей школы.

Физическая задача

В методической и учебной литературе под учебными физическими задачами понимают целесообразно подобранные упражнения, главное назначение которых заключается в изучении физических явлений, формировании понятий, развитии физического мышления учащихся и привитии им умений применять свои знания на практике.

Научить учащихся решать физические задачи - одна из сложнейших педагогических проблем. Я считаю данную проблему очень актуальной. Мой проект имеет своей целью решить две задачи:

1. Помочь в обучении школьников умению решать графические задачи;

2. Привлечь учащихся к данному виду работы.

Решение и анализ задачи позволяют понять и запомнить основные законы и формулы физики, создают представление об их характерных особенностях и границах применение. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения.

В исследованиях по выявлению степени усвоения учащимися отдельных операций, входящих в умение решать задачи, установлено, что 30-50% учащихся различных классов указывают на отсутствие у них такого умения.

Неумение решать задачи является одной из основных причин снижения успеха в изучении физики. Проведенные исследования показали, что неумение самостоятельно решать задачи является основной причиной нерегулярного выполнения домашних заданий. Только небольшая часть учащихся овладевает умением решать задачи, рассматривает как одно из важнейших условий повышения качества знаний по физике.

Такое состояние в практике обучения можно объяснить отсутствием четких требований к формированию данного умения, отсутствие внутренних побудительных мотивов и познавательного интереса у учащихся.

Решение задач в процессе обучения физики имеет многогранные функции:

  • Овладение теоретическими знаниями.
  • Овладение понятиями о физических явлениях и величинах.
  • Умственного развития, творческого мышления и специальных способностей учащихся.
  • Знакомит учащихся с достижениями науки и техники.
  • Воспитывает трудолюбие, настойчивость, волю, характер, целеустремленность.
  • Является средством контроля за знаниями, умениями и навыками учащихся.

Графическая задача.

Графические задачи - это такие задачи, в процессе решения которых используют графики, диаграммы, таблицы, чертежи и схемы.

Например:

1. Построить график пути равномерного движения, если v = 2 м/с или равноускоренного при v 0 =5 м/с и а = 3 м/с 2 .

2. Какие явления характеризует каждая часть графика…

3. Какое тело движется быстрее

4. На каком участке тело двигалось быстрее

5. Определить по графику скорости величину, пройденного пути.

6. На каком участке движения тело покоилось. Скорость увеличивалась, уменьшалась.

Решение графических задач способствует уяснению функциональной зависимостью между физическими величинами, привитию навыков работы с графиками, развитию умения работать с масштабами.

По роли графиков в решении задач их можно подразделить на два вида: - задачи, ответ на вопрос которых может быть найден в результате построения графика; - задачи, ответ на вопрос которых может быть найден с помощью анализа графика.

Графические задачи могут быть комбинированными с экспериментальными.

Например:

С помощью мензурки с водой определить вес деревянного бруска…

Подготовка к решению графических задач.

Для решения графических задач ученик должен знать различные виды функциональных зависимостей, что означает пересечение графиков с осями, графиков между собой. Нужно понимать чем отличаются зависимости, например, x = x 0 + vt и x = v 0 t + at 2 /2 или x =x m sinω 0 t и x = - x m sinω 0 t; x =x m sin(ω 0 t+ α) и x =x m cos (ω 0 t+ α) и т.д.

План подготовки должен содержать следующие разделы:

· а) Повторить графики функций (линейной, квадратичной, степенной) · б) Выяснить - какую роль играют графики в физике, какую информацию несут. · в) Систематизировать физические задачи по значимости графиков в них. · г) Изучить методы и приемы анализа физических графиков · д) Выработать алгоритм решения графических задач по различным разделам физики · е) Выяснить общую закономерность в решении графических задач. Для овладения методами решения задач необходимо решать большое количество разнотипных задач, соблюдая принцип - «От простого к сложному». Начиная с простых, осваивать методы решения, сравнивать, обобщать разные задачи как на основе графиков, так и на основе таблиц, диаграмм, схем. Следует обращать внимание на обозначение величин по координатным осям (единицы физических величин, наличие дольных или кратных приставок), масштаб, вид фукциональной зависимости (линейная, квадратичная, логарифмическая, тригонометрическая и т.п.), на углы наклона графиков, точки пересечения графиков с координатными осями или графиков между собой. Особенно внимательно необходимо подходить к задачам с заложенными «ощибками», так же к задачам с фотографиями шкал измерительных приборов. В этом случае нужно правильно определить цену деления измерительных приборов и безошибочно считать значения измеряемых величин. В задачах на геометрическую оптику особенно важно аккуратно и точно делать построение лучей и определить пересечения их с осями и между собой.

Как решать графические задачи

Овладение общим алгоритмом решения физических задач

1. Осуществление анализа условия задачи с выделением задач системы, явлений и процессов, описанных в задаче, с определением условий их протекания

2. Осуществление кодирования условия задачи и процесса решения на различных уровнях:

а) краткая запись условия задачи;

б) выполнение рисунков, электрических схем;

в) выполнение чертежей, графиков, векторных диаграмм;

г) запись уравнения (системы уравнений) или построение логического умозаключения

3. Выделение соответствующего метода и способов решения конкретной задачи

4. Применение общего алгоритма для решения задач различных видов

Решение задачи начинается с чтения условия. Нужно убедиться в том, что все термины и понятия в условии ясны для учащихся. Непонятные термины выясняются после первичного чтения. Одновременно необходимо выделить, какое явление, процесс или свойство тел описывается в задаче. Затем задача читается повторно, но уже с выделением данных и искомых величин. И только после этого осуществляют краткую запись условия задачи.

Составление плана

Действие ориентировки позволяет осуществить вторичный анализ воспринятого условия задачи, в результате выполнения которого выделяются физические теории, законы, уравнений, объясняющие конкретную задачу. Затем выделяются методы решения задач одного класса и находится оптимальный метод решения данной задачи. Результатом деятельности учащихся является план решения, который включает цепочку логических действий. Правильность выполнения действий по составлению плана решения задачи контролируется.

Процесс решения

Во-первых, необходимо уточнить содержание известных уже действий. Действие ориентации на данном этапе предполагает еще раз выделение метода решения задачи и уточнение вида решаемой задачи по способу задания условия. Последующим действием является планирование. Планируется способ решения задачи, тот аппарат (логический, математический, экспериментальный) с помощью которого возможно осуществить дальнейшее ее решение.

Анализ решения

Последний этап процесса решения задачи заключается в проверке полученного результата. Осуществляется он снова теми же действиями, но содержание действий изменяется. Действие ориентации - это выяснение сущности того, что необходимо проверить. Например, результатами решения могут быть значения величин коэффициентов, физических постоянных характеристик механизмов и машин, явлений и процессов.

Результат, полученный в ходе решения задачи, должен быть правдоподобным и соответствовать здравому смыслу.

Распространенность графических задач в КИМах в заданиях ЕГЭ

Изучение материалов ЕГЭ ряда лет (2004 - 2013г.г.) показало, в заданиях ЕГЭ по различным разделам физики распространены графические задачи по различным разделам физики. В заданиях А: по механике - 2-3 по молекулярной физике - 1 по термодинамике - 3 по электродинамике - 3-4 по оптике - 1-2 по квантовой физике - 1 по атомной и ядерной физике - 1 В заданиях В: по механике -1 по молекулярной физике - 1 по термодинамике - 1 по электродинамике - 1 по оптике - 1 по квантовой физике - 1 по атомной и ядерной физике - 1 В заданиях С: по механике - по молекулярной физике - по термодинамике - 1 по электродинамике - 1 по оптике - 1 по квантовой физике - по атомной и ядерной физике - 1

Наши исследования

А. Анализ ошибок при решении графических задач

Анализ решения графических задач показал, что встречаются следующие распостранённые ошибки:

Ошибки в чтении графиков;

Ошибки в действиях с векторными величинами;

Ошибки при анализе графиков изопроцессов;

Ошибки на графическую зависимость электрических величин;

Ошибки при построении с применением законов геометрической оптики;

Ошибки в графических заданиях на квантовые законы и фотоэффект;

Ошибки на применение законов атомной физики.

Б. Социологический опрос

Для того, чтобы выяснить как учащиеся школы осведомлены о графических задачах, мы провели социологический опрос.

Ученикам и учителям нашей школы мы предлагали следующие вопросы анкеты:

  1. 1. Что такое графическая задача?

а) задачи с рисунками;

б) задачи, содержащие схемы, диаграммы;

в) не знаю.

  1. 2. Для чего графические задачи?

б) для развития умения строить графики;

в) не знаю.

3. Можете ли решать графические задачи?

а) да; б) нет; в) не уверен;

4. Хотите ли научиться решать графические задачи?

А) да; б) нет; в) затрудняюсь ответить.

Было опрошено 50 человек. В результате опроса были получены следующие данные:

ВЫВОДЫ:

  1. В результате работы над проектом «Графические задачи» изучили особенности графических задач.
  2. Изучили особенности методики решения графических задач.
  3. Провели анализ характерных ошибок.
  4. Провели социологический опрос.

Рефлексия деятельности:

  1. Нам было интересно работать над проблемой графических задач.
  2. Мы научились проводить исследовательскую деятельность, сопоставлять и сравнивать результаты исследований.
  3. Мы выяснили, что владение методами решения графических задач необходимо для понимания физических явлений.
  4. Мы выяснили, что владение методами решения графических задач необходимо для успешной сдачи ЕГЭ.

Лучшие статьи по теме