Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Стены
  • Химические элементы в космосе. Химия и космос. химия земли к сожалению, человек научился использовать только те материалы, которые находятся на поверхности земли, но земные ресурсы. Смотреть что такое "Космохимия" в других словарях

Химические элементы в космосе. Химия и космос. химия земли к сожалению, человек научился использовать только те материалы, которые находятся на поверхности земли, но земные ресурсы. Смотреть что такое "Космохимия" в других словарях


Космохимия Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Геохимия - наиболее изученная часть космохимии. Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Геохимия - наиболее изученная часть космохимии.


Химия Земли В состав земной коры входят: O – 46.6 % Ca – 3.63 % Al – 8.13 % Na – 2.83 % Si – % K – 2.59 % Fe – 5.0 % Mg – 2.0 % Всего - 98,59%


Химический состав метеорита Химические анализы метеоритов, упавших на нашу планету, дали замечательные результаты. Если подсчитать среднее содержание во всех метеоритах наиболее распространенных на Земле элементов: железа, кислорода, кремния, магния, алюминия, кальция,- то на их долю падает ровно 94%, т. е. их в составе метеоритов равно столько же, сколько в составе земного шара.








Химия межзвёздного пространства Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы. Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы. Химия межзвездного пространства - удивительно сложна. В космосе были открыты простейшие радикалы: например, метин (CH), гидроксил (OH). Где есть гидроксил, там должна быть и вода, и она была действительно найдена в межзвездном пространстве. В космосе есть вода, органические молекулы (формальдегид), аммиак. Эти соединения, реагируя между собой, могут привести к образованию аминокислот.


Лунная химия Лунные камни особенные – на их составе сказывается недостаток кислорода. На Луне не было ни свободной воды, ни атмосферы. Все летучие соединения, возникшие при магматических процессах, улетели в космос. Каменные метеориты сложены простыми силикатами, число минералов в них едва достигает сотни. В лунных же породах минералов немного больше, чем в метеоритах, – вероятно, несколько сотен. А на поверхности Земли открыто больше 3 тыс. минералов. Это говорит о сложности земных химических процессов по сравнению с лунными.


Химический состав планет Меркурий – самая близкая к Солнцу планета Меркурий покрыт силикатными породами, сходными с земными. Состав атмосферы Венеры углекислого газа (СО2) около 97 %, азота (N2) не более 2 %, водяного пара (Н2О) около 1 %, кислорода (О2) не более 0,1 %.


Химический состав планет Атмосфера этой планеты состоит из углекислоты, есть немного азота, кислорода и водяного пара. Советские и американские ученые отправили автоматические исследовательские станции и на Марс. Марс – холодная безжизненная пыльная пустыня. Самая интересная, удивительная и загадочная планета с точки зрения химии – это Юпитер. На 98 % Юпитер состоит из водорода и гелия. Обнаружены также вода, сероводород, метан и аммиак.


Химический состав планет Атмосфера Урана состоит примерно на 83% из водорода, на 15% из гелия и на 2% из метана. Подобно другим газовым планетам, Уран имеет полосы облаков, которые очень быстро перемещаются. Строение и набор составляющих Нептун элементов, вероятно, подобны Урану: различные "льды" или отвердевшие газы с содержанием около 15% водорода и небольшого количества гелия Атмосфера Сатурна - в основном, водород и гелий.


МЕТАЛЛЫ В КОСМОСЕ Титан сегодня - важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники. Титан сегодня - важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники.


Фуллерены в космосе фуллерены разветвлённые цепочки углеводородов фуллерены разветвлённые цепочки углеводородов Фуллерены впервые найдены вне Млечного Пути Фуллерены впервые найдены вне Млечного Пути фуллерены были найдены в метеоритах фуллерены были найдены в метеоритах

Бесконечно разнообразные живые организмы состоят из ограниченного набора атомов, появлением которого мы в значительной степени обязаны звездам. Самое мощное событие в жизни Вселенной - Большой Взрыв - заполнило наш мир веществом весьма скудного химического состава.
Считается, что объединение нуклонов (протонов и нейтронов) в расширяющемся пространстве не успело продвинуться дальше гелия. Поэтому догалакгическая Вселенная была заполнена почти исключительно ядрами водорода (то есть попросту протонами) с небольшой - примерно четверть по массе - добавкой ядер гелия (альфа-частиц). Больше в ней, не считая легких электронов, не было практически ничего. Как именно происходило первичное обогащение Вселенной ядрами более тяжелых элементов, мы пока сказать не можем. По сей день не обнаружена ни одна «первичная» звезда, то есть объект, состоящий только из водорода и гелия. Существуют специальные программы поиска звезд с низким содержанием металлов (напомним, что астрономы условились называть «металлами» все элементы тяжелее гелия), и эти программы показывают, что звезды «экстремально низкой металличности» в нашей Галактике крайне редки. Они есть, у некоторых рекордных экземпляров содержание, например, железа уступает солнечному в десятки тысяч раз. Однако таких звезд - единицы, и вполне может оказаться, что «в их лице» мы имеем дело не с «почти первичными» объектами, а просто с какой-то аномалией. В целом же даже в самых старых звездах Галактики содержатся изрядные количества углерода, азота, кислорода и более тяжелых атомов. Это означает, что даже наиболее древние галактические светила - в действительности не первые: до них во Вселенной уже имелись какие-то «фабрики» по производству химических элементов.

Европейская инфракрасная космическая обсерватория Herschel обнаружила в БТО спектральные «отпечатки» органических молекул. На этом изображении на инфракрасный снимок Туманности Ориона, полученный космическим телескопом Spitzer (NASA), наложен ее спектр, снятый спектрографом высокого разрешения HIFI обсерватории Herschel. Он наглядно демонстрирует ее насыщенность сложными молекулами: в спектре легко отождествляются линии воды, моноксида углерода и диоксида серы, а также органических соединений - формальдегида, метанола, диметилового эфира, синильной кислоты и их изотопных аналогов. Неподписанные пики принадлежат многочисленным пока не идентифицированным молекулам.

Сейчас считается, что такими фабриками могли быть сверхмассивные звезды так называемого населения третьего (III) типа. Дело в том, что тяжелые элементы - не просто «приправа» к водороду и гелию. Это важные участники процесса звездообразования, которые позволяют сжимающемуся протозвездному газовому сгустку сбрасывать тепло, выделяющееся при сжатии. Если лишить его такого теплоотвода, он попросту не сможет сжаться - то есть не сможет стать звездой... Точнее, сможет, но только при условии, что его масса очень велика - в сотни и тысячи раз больше, чем у современных звезд. Поскольку звезда живет тем меньше, чем больше ее масса, первые гиганты существовали очень недолго. Они прожили короткие яркие жизни и взорвались, не оставив никакого следа, кроме атомов тяжелых элементов, успевших синтезироваться в их недрах или образовавшихся непосредственно при взрывах.
В современной Вселенной практически единственным поставщиком тяжелых элементов является звездная эволюция. В наиболее значительной степени таблицу Менделеева «заполняют», скорее всего, звезды, масса которых превышает солнечную более чем на порядок. Если на Солнце и других подобных светилах термоядерный синтез в ядре не заходит дальше кислорода, то более массивные объекты в процессе эволюции приобретают «луковичную» структуру: их ядра окружены слоями, и чем глубже слой - тем более тяжелые ядра в нем синтезируются. Здесь цепочка термоядерных превращений заканчивается уже не кислородом, а железом, с образованием промежуточных ядер - неона, магния, кремния, серы и других.

Большая Туманность Ориона (БТО) - одна из ближайших областей звездообразования, содержащая большие количества газа, пыли и новорожденных звезд. Одновременно эта туманность является одной из крупнейших «химических фабрик» в нашей Галактике, причем ее истинная «мощность», равно как и пути синтеза в ней молекул межзвездного вещества, астрономам пока не совсем понятны. Это изображение получено с помощью Камеры широкого поля (Wide Field Imager Camera), установленной на 2,2-метровом телескопе MPG/ES0 обсерватории Ла Силья в Чили.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Чтобы обогатить Вселенную этой смесью, мало синтезировать атомы - нужно еще и выбросить их в межзвездное пространство. Это происходит при вспышке сверхновой: когда у звезды образуется железное ядро, она теряет устойчивость и взрывается, разбрасывая вокруг себя часть продуктов термоядерного синтеза. Попутно в разлетающейся оболочке происходят реакции, порождающие ядра тяжелее железа. К похожему результату приводят и вспышки сверхновых другого типа - термоядерные взрывы на белых карликах, масса которых из-за перетекания вещества со звезды-спутника или благодаря слиянию с другим белым карликом становится больше предела Чандрасекара (1,4 солнечной массы).
В обогащение Вселенной рядом элементов - в том числе углеродом и азотом, необходимыми для синтеза органических молекул - заметный вклад вносят также менее массивные звезды, заканчивающие свою жизнь образованием белого карлика и расширяющейся планетарной туманности. На завершающем этапе эволюции в их оболочках также начинают происходить ядерные реакции, усложняющие элементный состав вещества, позже выбрасываемого в космическое пространство.
В итоге межзвездное вещество Галактики, и по сей день состоящее в основном из водорода и гелия, оказывается загрязненным (или обогащенным - это уж как посмотреть) атомами более тяжелых элементов.

Букминстерфуллерены (сокращённо «фуллерены» или «букиболы») - крохотные сферические структуры, состоящие из четного числа (но не менее 60) углеродных атомов, соединенных в подобие узора футбольного мяча - впервые были обнаружены в спектрах планетарной туманности в Малом Магеллановом Облаке (ММО), одной из ближайших к нашей Галактике звездных систем. Открытие совершила в июле 2010 г. рабочая группа космического телескопа Spitzer (NASA), ведущего наблюдения в инфракрасном диапазоне. Общая масса содержащихся в туманности фуллеренов всего в пять ра? меньше массы Земли. На фоне снимка ММО, сделанного телескопом Spitzer, показано увеличенное изображение планетарной туманности (меньшая врезка) и найденных в ней молекул фуллерена (большая врезка), состоящих из 60 атомов углерода. К настоящему времени уже получены сообщения о регистрации характерных линий подобных молекул в спектрах объектов, расположенных в пределах Млечного Пути.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Эти атомы переносятся общими «течениями» галактического газа, вместе с ним сгущаются в молекулярные облака, попадают в протозвездные сгустки и протопланетные диски... чтобы в конечном итоге стать частью планетных систем и тех существ, которые их населяют. По крайней мере, один пример такой обитаемой планеты нам известен вполне достоверно.

Органика из неорганики


Земная жизнь - во всяком случае, с научной точки зрения - основана на химии и представляет собою цепочку взаимопревращений молекул. Правда, не каких-нибудь, а весьма сложных, но все-таки молекул - комбинаций атомов углерода, водорода, кислорода, азота, фосфора и серы (и пары десятков реже встречающихся элементов) в различных пропорциях. Сложность даже самых примитивных «живых» молекул долгое время мешала распознать в них обычные химические соединения. Существовало представление о том, что вещества, входящие в состав живых организмов, наделены особым качеством - «жизненной силой», поэтому заниматься их изучением должна специальная отрасль науки - органическая химия.
Одним из переломных моментов в истории химии считаются опыты Фридриха Вёлера (Friedrich Wohler), который в 1828 г. впервые синтезировал мочевину - органическое вещество - из неорганического (цианата аммония). Эти опыты стали первым шагом на пути к важнейшей концепции - признанию возможности зарождения жизни из «неживых» ингредиентов. В конкретных химических терминах ее впервые сформулировал в начале 1920-х годов советский биолог Александр Опарин. По его мнению, средой для возникновения жизни на Земле стала смесь простых молекул (аммиака, воды, метана и пр.), известная сейчас как «первичный бульон». В нем под воздействием внешних «впрысков» энергии (например, молний) небиологическим путем синтезировались простейшие органические молекулы, которые затем за очень длительный срок «собрались» в высокоорганизованные живые существа.

Экспериментальным доказательством возможности органического синтеза в «первичном бульоне» в начале 1950-х годов стали знаменитые опыты Хэролда Юри и Стэнли Миллера (Harold Urey, Stanley Miller), заключавшиеся в пропускании электрических разрядов сквозь смесь перечисленных выше молекул. Через пару недель эксперимента в этой смеси находили богатый ассортимент органики, включая простейшие аминокислоты и сахара. Эта наглядная демонстрация простоты абиогенеза имела отношение не только к проблеме происхождения земной жизни, но и к более масштабной проблеме жизни во Вселенной: поскольку никакие экзотические условия для синтеза органики на молодой Земле не требовались, логично было бы допустить, что подобные процессы имели место (или будут иметь место) на других планетах.

Поиски признаков жизни


Если до середины XX века в качестве наиболее вероятного места обитания «братьев по разуму» рассматривался фактически только Марс, то после окончания Второй мировой войны установление контактов на межзвездных расстояниях стало казаться делом ближайшего будущего. Именно в то время зародились основы новой науки, находящейся на стыке астрономии и биологии. Ее называют по-разному - экзобиология, ксенобиология, биоастрономия - но чаще всего употребляется название «астробиология». И одним из самых неожиданных астробиологических открытий за последние десятилетия стало осознание того факта, что простейшим «кирпичикам» жизни не было необходимости синтезироваться на Земле из неживой материи, в «первичном бульоне». Они могли попадать на нашу планету уже в готовом состоянии, ибо органические молекулы, как выяснилось, в изобилии присутствуют не только на планетах, но и - чего изначально даже не подозревали - в межзвездном газе.
Мощнейшим инструментом для изучения внеземного вещества является спектральный анализ. Он основан на том, что электроны в атоме находятся в состояниях - или, как принято говорить, занимают уровни - со строго определенными энергиями, и переходят с уровня на уровень, излучая или поглощая фотон, энергия которого равна разности энергий начального и конечного уровня. Если атом находится между наблюдателем и каким-либо источником света (например, фотосферой Солнца), он будет «выедать» из спектра этого источника только фотоны определенных частот, способные вызывать переходы электронов между энергетическими уровнями данного атома. В спектре на этих частотах появятся темные провалы - линии поглощения. Поскольку набор уровней индивидуален не только для каждого атома, но и для каждого иона (атома, лишенного одного или нескольких электронов), по набору спектральных линий можно надежно установить, какие именно атомы их породили. Например, по линиям в спектре Солнца и других звезд можно узнать, из чего состоят их атмосферы.
В 1904 г. Йоханнес Хартман (Johannes Hartmann) первым установил важный факт: не все линии в спектрах звезд возникают в звездных атмосферах. Некоторые из них порождаются атомами, находящимися гораздо ближе к наблюдателю - не возле звезды, а в межзвездном пространстве. Так были впервые обнаружены признаки существования межзвездного газа (точнее, только одного из его компонентов - ионизированного кальция).
Нельзя сказать, что это стало шокирующим открытием. В конце концов, почему бы в межзвездной среде (МЗС) не находиться ионизированному кальцию? Но мысль о том, что в ней могут присутствовать не только ионизированные и нейтральные атомы различных элементов, но и молекулы, долгое время казалась фантастической. МЗС в то время считалась местом, непригодным для синтеза хоть сколько-нибудь сложных соединений: крайне низкие плотности и температуры должны замедлять скорости химических реакций в ней практически до нуля. А если вдруг какие-то молекулы там все же появятся, они немедленно снова распадутся на атомы под действием света звезд.
Поэтому между открытием межзвездного газа и признанием существования межзвездных молекул прошло более 30 лет. В конце 1930-х годов в ультрафиолетовой области спектра были найдены линии поглощения МЗС, которые поначалу не удавалось приписать какому-либо химическому элементу. Объяснение оказалось простым и неожиданным: эти линии принадлежат не отдельным атомам, а молекулам - простейшим двухатомным соединениям углерода (СН, CN, СН+). Дальнейшие спектральные наблюдения в оптическом и ультрафиолетовом диапазонах позволили обнаружить линии поглощения свыше десятка межзвездных молекул.

«Подсказка» радиоастрономии


Подлинный расцвет исследований межзвездного «химического ассортимента» начался после появления радиотелескопов. Дело в том, что энергетические уровни в атоме - если не вдаваться в подробности - связаны только с движением электронов вокруг ядра, но у молекул, объединяющих несколько атомов, имеются дополнительные «движения», отражающиеся в спектре: молекула может вращаться, вибрировать, закручиваться... И с каждым из этих движении связана энергия, которая, как и энергия электрона, может иметь лишь фиксированный набор значений. Различные состояния молекулярного вращения или колебания тоже называются «уровнями». При переходе с уровня на уровень молекула также излучает или поглощает фотон. Важное отличие состоит в том, что энергии вращательных и колебательных уровней сравнительно близки. Поэтому их разность невелика, и фотоны, поглощаемые либо излучаемые молекулой при переходе с уровня на уровень, попадают не в ультрафиолетовый и даже не в видимый диапазон, а в инфракрасный (колебательные переходы) и в радиодиапазон (вращательные переходы).

Советский астрофизик Иосиф Шкловский первым обратил внимание на то, что спектральные линии излучения молекул нужно искать в радиодиапазоне. Конкретно он писал про молекулу (точнее, свободный радикал) гидроксила ОН, которая при определенных условиях становится источником радиоизлучения на длине волны 18 см, очень удобной для наблюдений с Земли. Именно гидроксил и стал первой молекулой в МЗС, обнаруженной в 1963 г. в ходе радионаблюдений и дополнившей список уже известных двухатомных межзвездных молекул.
Но дальше стало интереснее. В 1968 г. были опубликованы результаты наблюдений трех- и четырехатомных молекул - воды и аммиака (Н 2 0, NH 3). А годом позже появилось сообщение об открытии в МЗС первой органической молекулы - формальдегида (Н 2 СO). С тех пор астрономы открывают по нескольку новых межзвездных молекул ежегодно, так что сейчас полное их число превысило две сотни. Конечно, доминируют в этом списке простые соединения, включающие от двух до четырех атомов, но значительную часть (более трети) составляют многоатомные молекулы.
Добрую половину многоатомных межзвездных соединений в земных условиях мы однозначно отнесли бы к органике: формальдегид, диметиловый эфир, метиловый и этиловый спирт, этиленгликоль, метилформиат, уксусная кислота... Самая «длинная» молекула из числа открытых в МЗС была найдена в 1997 г. в одном из плотных сгустков молекулярного облака ТМС-1 в созвездии Тельца. Для Земли это не очень обычное соединение из семейства цианополиинов, представляющее собой цепочку из 11 атомов углерода, к одному концу которой «прикреплен» атом водорода, к другому - атом азота. В этом же сгустке обнаружены и другие органические молекулы, но по каким-то причинам он особенно богат именно молекулами цианополиинов с углеродными цепочками различной длины (3, 5, 7, 9, 11 атомов), за что получил название «цианополииновый пик».
Еще один известный объект с богатым «органическим содержанием» - молекулярное облако Sgr B2(N), расположенное вблизи центра нашей Галактики в направлении созвездия Стрельца. В нем открыто особенно много сложных молекул. Однако оно не обладает в этом отношении какой-то исключительностью - скорее, тут срабатывает эффект «поиска под фонарем». Обнаружение новых молекул, особенно органических - очень сложная задача, и наблюдатели зачастую предпочитают направлять телескопы на те участки неба, которые с большей вероятностью сулят успех. Поэтому мы очень много знаем о концентрации органики в молекулярных облаках Тельца, Ориона, Стрельца, и почти не располагаем информацией о содержании сложных молекул во многих других подобных облаках. Но это отнюдь не значит, что органики там нет - просто до этих объектов еще «антенны не дошли».

Трудности расшифровки


Здесь необходимо пояснить, что в данном случае означает «сложность». Даже элементарный анализ звездных спектров - весьма непростая задача. Да, набор линий каждого атома и иона строго индивидуален, но в спектре звезды друг на друга накладываются линии многих десятков элементов, и «рассортировать» их бывает очень нелегко. В случае же спектров органических молекул ситуация осложняется сразу по нескольким направлениям. Большинство многочисленных линий излучения (поглощения) атомов и ионов попадает в узкий спектральный диапазон, доступный для наблюдений с Земли. У сложных молекул количество линий также исчисляется тысячами, но эти линии «разбросаны» значительно шире - от ближнего ИК-диапазона (единицы и десятки микрометров) до радиодиапазона (десятки сантиметров).
Допустим, мы хотим доказать, что в молекулярном облаке имеется молекула акрилонитрила (CH 2 CHCN). Для этого нужно, во-первых, знать, в каких линиях излучает эта молекула. Но для многих соединений такие данные отсутствуют! Теоретические методы далеко не всегда позволяют рассчитать положение линий, а в лаборатории спектр молекулы зачастую не удается измерить, например, потому, что ее сложно выделить в чистом виде. Во-вторых, необходимо рассчитать относительные интенсивности этих линий. Их яркость зависит от свойств молекулы и от параметров среды (температуры, плотности и пр.), в которой она находится. Теория позволит предсказать, что в исследуемом молекулярном облаке линия на одной длине волны должна быть в три раза ярче линии той же молекулы на другой длине волны. Если найдены линии на нужных длинах волн, но с неправильным отношением интенсивностей - это весомый повод усомниться в правильности их идентификации. Разумеется, для уверенного обнаружения молекулы нужно провести наблюдения облака в максимально широком спектральном диапазоне. Но значительная часть электромагнитного излучения из космоса не достигает поверхности Земли! Значит, приходится либо наблюдать спектр молекулы фрагментарно в «окнах прозрачности» земной атмосферы, что, конечно, не добавляет надежности полученным результатам, либо использовать космический телескоп, что удается сделать крайне редко. Наконец, не стоит забывать, что линии искомой молекулы придется выделять среди других молекул, которых там десятки разновидностей, и у каждой - тысячи линий...
Неудивительно поэтому, что к отождествлению некоторых «представителей» космической органики астрономы идут годами. Показательна в этом отношении история обнаружения в МЗС глицина - простейшей аминокислоты. Хотя сообщения о регистрации в спектрах молекулярных облаков характерных признаков этой молекулы появлялись неоднократно, факт ее наличия все еще не является общепризнанным: хотя многие линии, как будто бы принадлежащие глицину, реально наблюдаются, другие его ожидаемые линии в спектрах отсутствуют, что дает повод усомниться в идентификации.

Лаборатории межзвездного синтеза


Но все это - сложности наблюдений. В теории за последние десятилетия ситуация с межзвездным органическим синтезом существенно прояснилась, и теперь мы четко понимаем, что первоначальные представления о химической инертности МЗС были неверны. Для этого, конечно, пришлось предварительно многое узнать о ее составе и физических свойствах. Значительная доля объема межзвездного пространства действительно «стерильна». Она заполнена очень горячим и разреженным газом с температурами от тысяч до миллионов кельвинов и пронизана жестким высокоэнергетическим излучением. Но попадаются в Галактике и отдельные конденсации межзвездного вещества, где температура низка (от единиц до десятков кельвинов), а плотность - заметно выше средней (сотни и более частиц на кубический сантиметр). Газ в этих конденсациях перемешан с пылью, которая эффективно поглощает жесткое излучение, в результате чего их внутреннее пространство - холодное, плотное, темное - оказывается удобным местом для протекания химических реакций и накопления молекул. В основном такие «космические лаборатории» встречаются в уже упоминавшихся молекулярных облаках. Совокупно они занимают меньше процента общего объема галактического диска, но в них сосредоточена примерно половина массы межзвездной материи Млечного Пути.

Полицикяические ароматические углеводороды (ПАУ) - наиболее сложные соединения, обнаруженные в межзвездном пространстве. На этом инфракрасном снимке области звездообразования в созвездии Кассиопеи показаны структуры молекул некоторых из них (атомы водорода - белые, углерода - серые, кислорода -красные), а также несколько их характерных спектральных линий. Ученые полагают, что в ближайшем будущем спектры ПАУ будут иметь особую ценность для расшифровки химического состава межзвездной среды методами инфракрасной спектроскопии.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Элементный состав молекулярных облаков напоминает состав Солнца. В основном они состоят из водорода - точнее, молекул водорода Н 2 с небольшой «добавкой» гелия. Остальные элементы присутствуют на уровне незначительных примесей с относительным содержанием около 0,1% (для кислорода) и ниже. Соответственно и молекул, включающих эти примесные атомы, тоже очень мало по отношению к самой распространенной молекуле Н 2 . Но почему эти молекулы вообще образуются? На Земле для химического синтеза используются специальные установки, обеспечивающие достаточно высокие плотности и температуры. Как работает межзвездный «химический реактор» - холодный и разреженный?
Здесь нужно помнить, что астрономия имеет дело с другими масштабами времени. На Земле нам нужно получить результат быстро. Природа же никуда не торопится. Синтез межзвездной органики занимает сотни тысяч и миллионы лет. Но даже для таких медленно протекающих реакций необходим катализатор. В молекулярных облаках его роль играют частицы космических лучей. Первым шагом к синтезу сложных органических молекул можно считать формирование связи С-Н. Но если просто взять смесь молекул водорода и атомов углерода - эта связь сама по себе образовываться не будет. Другое дело - если часть атомов и молекул каким-то образом превратить в ионы. Химические реакции с участием ионов протекают куда быстрее. Именно эту начальную ионизацию и обеспечивают космические лучи, инициируя цепочку взаимодействий, в ходе которых атомы тяжелых элементов (углерода, азота, кислорода) начинают «прицеплять» к себе атомы водорода, образуя простые молекулы, в том числе и обнаруженные в МЗС в первую очередь (СН и СН+).
Дальнейший синтез идет еще легче. Двухатомные молекулы присоединяют к себе новые атомы водорода, превращаясь втрех- и четырехатомные (СН 2 +, СН 3 +), многоатомные молекулы начинают реагировать между собой, трансформируясь в более сложные соединения - ацетилен, синильную кислоту (HCN), аммиак, формальдегид, которые, в свою очередь, становятся «кирпичиками» для синтеза комплексной органики.
После того, как космические лучи дали первичный толчок химическим реакциям, важным катализатором межзвездного органического синтеза становятся частицы космической пыли. Они не только защищают внутренние области молекулярных облаков от разрушительного излучения, но и предоставляют свою поверхность для эффективного «производства» многих неорганических и органических молекул. В совокупности реакций нетрудно представить себе образование не только глицина, но и более сложных соединений. В этом смысле можно сказать, что задача обнаружения простейшей аминокислоты имеет скорее спортивный смысл: кто первым уверенно найдет ее в космосе. В том, что глицин в молекулярных облаках присутствует, ученые не сомневаются.

Как выжить «молекулам жизни»


В общем, на данный момент можно считать доказанным, что для синтеза органики не обязателен «первичный бульон». Природа прекрасно справляется с этой задачей и в космическом пространстве. Но имеет ли межзвездная органика какое-то отношение к появлению жизни? Действительно, звезды и планетные системы образуются в молекулярных облаках и, естественно, «вбирают» их вещество. Однако прежде, чем стать планетой, это вещество проходит через достаточно жесткие условия протопланетного диска и не менее жесткие условия молодой Земли. К сожалению, наши возможности исследовать эволюцию органических соединений в протопланетных дисках весьма ограничены. По размеру они очень малы, и искать в них органические молекулы еще сложнее, чем в молекулярных облаках. Пока что в формирующихся планетных системах других звезд обнаружено около десятка молекул. Конечно, в их число входят и простые органические соединения (в частности, формальдегид), но более подробно эволюцию органики в этих условиях мы пока описать не можем.
На помощь приходят исследования нашей собственной планетной системы. Правда, ей уже больше четырех с половиной миллиардов лет «от роду», но часть ее первичного протопланетного вещества и по сей день сохранилась в некоторых метеоритах. Именно в них обилие органики оказалось вполне впечатляющим - особенно в так называемых углистых хондритах, составляющих несколько процентов от общего числа упавших на Землю «небесных камней». Они обладают рыхлой глинистой структурой, богаты связанной водой, но главное - значительную часть их вещества «занимает» углерод, входящий в состав множества органических соединений. Метеоритная органика состоит из относительно простых молекул, среди которых есть и аминокислоты, и азотистые основания, и (карбоновые кислоты, и «нерастворимое органическое вещество», представляющее собой продукт полимеризации (осмоления) более простых соединений. Конечно, мы не можем сейчас уверенно сказать, что эта органика была «унаследована» из вещества протосолнечного молекулярного сгустка, но косвенные признаки на это указывают - в частности, в метеоритах обнаружен явный избыток изотопомеров ряда молекул.

Ацетальдегид (слева) и его изомеры - виниловый спирт и окись этилена - также обнаружены в межзвездном пространстве.

10 восьмиатомных

В 1997 г. радионаблюдения подтвердили наличие в космосе уксусной кислоты.

9 девятиатомных молекул и 17 молекул, содержащих от 10 до 70 атомов

Одни из самых тяжелых (и длинных) молекул, найденных в космическом пространстве, относятся к классу полиинов - они содержат несколько тройных связей, последовательно соединенных «в цепочку» одинарными связями. В земных условиях не встречаются.

МОЛЕКУЛЫ, ОТКРЫТЫЕ К НАСТОЯЩЕМУ ВРЕМЕНИ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Изотопомерами или изотопологами называют молекулы, в которых один или несколько атомов замещены неосновным (не самым распространенным) изотопом химического элемента. Например, изотопомером является тяжелая вода, в которой легкий изотоп водорода протий замещен дейтерием. Особенность химии молекулярных облаков состоит в том, что в них изотопомеры образуются несколько более эффективно, чем «обычные» молекулы. Например, содержание дейтерирован-ого формальдегида (HDCO) может составлять десятки процентов от содержания обычного формальдегида - при том, что в целом атомов дейтерия (D) в космосе в сотню тысяч раз меньше, чем атомов протия (Н). Такое же «предпочтение» межзвездные молекулы отдают изотопу азота 15N против обычного 14N. И такое же относительное переобогащение наблюдается в метеоритной органике.
Пока из имеющихся данных можно сделать три важных вывода. Во-первых, органические соединения очень высокой степени сложности весьма эффективно синтезируются в межзвездной среде нашей и других галактик. Во-вторых, эти соединения могут сохраняться в протопланетных дисках и входить в состав планетезималей - «зародышей» планет. И наконец, даже если органика «не пережила» сам процесс формирования Земли или другой планеты, она вполне могла попасть туда позже с метеоритами (как это происходит и в наши дни).
Естественно, возникает вопрос о том, как далеко мог зайти органический синтез на допланетном этапе. А что, если с метеоритами на Землю попали не «кирпичики» для зарождения жизни, а сама жизнь? В конце концов, в начале XX века казалось невозможным появление в МЗС даже простых двухатомных молекул. Теперь же мы массово находим в молекулярных облаках вещества, названия которых трудно выговорить с первого раза. Обнаружение в МЗС аминокислот - скорее всего, лишь вопрос времени. Что же мешает сделать следующий шаг и предположить, что метеориты занесли на Землю жизнь «в готовом виде»?
И действительно, уже несколько раз в литературе появлялись сообщения о том, что в метеоритах обнаружены остатки простейших внеземных организмов... Однако пока эти сведения слишком ненадежны и разрознены, чтобы можно было уверенно включить их в обшую картину происхождения жизни.

В то время как «горячими» ядерными процессами в космосе - плазменным состоянием , нуклеогенезом (процессом элементов) внутри звёзд и др. - в основном занимается физика. - новая область знания, получившая значительное развитие во 2-й половине 20 в. главным образом благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём излучения Солнца, звёзд и, отчасти, внешних слоев планет. Этот метод позволил открыть элемент на Солнце ещё до того, как он был обнаружен на Земле. Единственным прямым методом изучения космических тел был и фазового состава различных метеоритов, выпадавших на Землю. Так был накоплен значительный материал, имеющий фундаментальное значение и для дальнейшего развития . Развитие космонавтики, полёты автоматических станций к планетам Солнечной системы - Луне, Венере, Марсу - и, наконец, посещение человеком Луны открыли перед совершенно новые возможности. Прежде всего - это непосредственное исследование Луны при участии космонавтов или путём забора образцов автоматическими (подвижными и стационарными) аппаратами и доставка их на Землю для дальнейшего изучения в химических лабораториях. Кроме того, автоматические спускаемые аппараты сделали возможным изучение и условий его существования в и на поверхности др. планет Солнечной системы, прежде всего Марса и Венеры. Одна из важнейших задач изучение на основе состава и распространённости космических тел, стремление объяснить на химической основе их происхождение и историю. Наибольшее внимание в уделяется проблемам распространённости и распределения . Распространённость в космосе определяется нуклеогенезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва или Mg или Li и др. Распределение по фазам в космических процессах исключительно разнообразно. На агрегатное и фазовое состояние в космосе на разных стадиях его превращений оказывают разностороннее влияние:1) огромный диапазон , от звёздных до абсолютного нуля; 2) огромный диапазон , от миллионов в условиях планет и звёзд до космического ; 3) глубоко проникающие галактическое и солнечное излучения различного состава и интенсивности; 4) излучения, сопровождающие превращения нестабильных в стабильные; 5) магнитное, гравитационное и др. физические поля. Установлено, что все эти факторы влияют на состав внешней коры планет, их газовых оболочек, метеоритного , космической и др. При этом процессы фракционирования в космосе касаются не только атомного, но и изотопного состава. Определение изотопных , возникших под влиянием излучений, позволяет глубоко проникать в историю процессов образования планет, астероидов, метеоритов и устанавливать возраст этих процессов. Благодаря экстремальным условиям в космическом пространстве протекают процессы и встречаются состояния , не свойственные Земле: плазменное состояние звёзд (например, Солнца); конденсирование Не, На, CH 4 , NH 3 и др. легколетучих в больших планет при очень низких ; образование нержавеющего в космическом при на Луне; хондритовая структура каменных метеоритов; образование сложных органических в метеоритах и, вероятно, на поверхности планет (например, Марса). В межзвёздном пространстве обнаруживаются в крайне малых и многих элементов, а также ( , и т. д.) и, наконец, идёт синтез различных сложных (возникающих из первичных солнечных Н, CO, NH 3 , O 2 , N 2 , S и других простых соединений в равновесных условиях при участии излучений). Все эти органические в метеоритах, в межзвёздном пространстве - оптически не активны.

С развитием астрофизики и некоторых др. наук расширились возможности получения информации, относящейся к . Так, поиски в межзвёздной среде ведутся посредством методов радиоастрономии. К концу 1972 в межзвёздном пространстве обнаружено более 20 видов , в том числе несколько довольно сложных органических , содержащих до 7 . Установлено, что наблюдаемые их в 10-100 млн. раз меньше, чем . Эти методы позволяют также посредством сравнения радиолиний изотопных разновидностей одной (например, H 2 12 CO и H 2 13 CO) исследовать изотопный состав межзвёздного и проверять правильность существующих теорий происхождения .

Исключительное значение для познания космоса имеет изучение сложного многостадийного процесса низкотемпературной , например перехода солнечного в твёрдое планет Солнечной системы, астероидов, метеоритов, сопровождающегося конденсационным ростом, аккрецией (увеличением массы, «нарастанием» любого путём добавления частиц извне, например из газопылевого облака) и агломерацией первичных агрегатов (фаз) при одновременной потере летучих в космического пространства. В космическом , при относительно низких (5000-10000 °С), из остывающей последовательно выпадают твёрдые фазы разного химического состава (в зависимости от ), характеризующиеся различными энергиями связи, окислительными потенциалами и т. п. Например, в хондритах различают силикатную, металлическую, сульфидную, хромитную, фосфидную, карбидную и др. фазы, которые агломерируются в какой-то момент их истории в каменный метеорит и, вероятно, подобным же образом и в планет земного типа.

Далее в планетах происходит процесс дифференциации твёрдого, остывающего на оболочки - металлическое ядро, силикатные фазы (мантию и кору) и - уже в результате вторичного разогревания планет теплотой радиогенного происхождения, выделяющейся при распаде радиоактивных , и и, возможно, других элементов. Такой процесс выплавления и при вулканизме характерен для Луны, Земли, Марса, Венеры. В его основе лежит универсальный принцип зонного , разделяющего легкоплавкое (например, коры и ) от тугоплавкого мантии планет. Например, первичное солнечное CaSiO 3 + CO 2 достигает равновесного состояния, при котором в ней содержится 97% CO 2 при 90 атм. Пример Луны говорит о том, что вторичные (вулканические) не удерживаются небесным телом, если его масса невелика.

Соударения в космическом пространстве (либо между частицами метеоритного , либо при налёте метеоритов и др. частиц на поверхность планет) благодаря огромным космическими скоростям движения могут вызвать тепловой , оставляющий следы в структуре твёрдых космических тел, и образование метеоритных кратеров. Между космическими телами происходит . Например, по минимальной оценке, на Землю ежегодно выпадает не меньше 1× в другие, а в общем случае - к изменению изотопного или атомного состава »,1971, в. 11; Аллер Л. Х., пер. с англ., М., 1963; Сиборг Г. Т., Вэленс Э. Г., Элементы Вселенной, пер. с англ., 2 изд., М., 1966; Merrill P. W., Space chemistry, Ann Arbor, 1963; Spitzer L., Diffuse matter in space, N. Y.,1968; Snyder L. E., Buhl D., Molecules in the interstellar medium, «Sky and Telescope», 1970, v. 40, p. 267, 345.

Современным астрономам известно около трех с половиной тысяч экзопланет, которые находятся от нас на расстоянии от четырех до двадцати восьми тысяч световых лет. Некоторые из них очень . Попасть на какую-нибудь из них в обозримом будущем будет сложно - разве что человечество совершит огромный технологический скачок. Тем не менее, экзопланеты уже сегодня представляют собой огромный интерес с точки зрения астрохимии. Об этом - наш новый материал, написанный в партнерстве с Уральским федеральным университетом .

Основную часть вещества Вселенной (если говорить о барионном веществе) составляет водород - около 75 процентов. На втором месте идет гелий (около 23 процентов). Однако в космосе можно найти самые разнообразные химические элементы и даже сложные молекулярные соединения, включая органические. Изучением процессов образования и взаимодействия химических соединений в космосе занимается астрохимия . Представителям этой специальности очень интересно исследовать экзопланеты, потому что на них могут реализоваться самые разные сценарии, которые приведут к появлению необычных соединений.

Радуга на службе у астрономов

Основным инструментом получения информации о химическом составе отдаленных объектов является спектроскопия . Она использует тот факт, что атомы химических элементов (или молекулы соединений) могут излучать или поглощать свет только на определенных частотах, отвечающих переходам системы между различными уровнями энергии. В результате формируется спектр излучения (или поглощения), по которому можно однозначно определить вещество. Это как отпечатки пальцев, только для атомов.

Наглядным примером разложения света в спектр является радуга. Нам переходы от одного цвета к другому кажутся плавными и непрерывными, а на самом деле некоторых цветов в радуге нет, потому что определенные длины волн поглощаются содержащимися в Солнце водородом и гелием. Кстати, гелий впервые открыли именно по наблюдению за спектром Солнца (поэтому он и называется «гелий», от др.-греч. ἥλιος - «солнце»), а в лаборатории его выделили только через 27 лет. Это был первый успешный пример использования спектроскопии для изучения звезд.

Фраунгоферовы линии поглощения на фоне непрерывного спектра фотосферы Солнца.

Wikimedia commons


В простейшем случае атома водорода спектр излучения представляет собой серию линий, отвечающих переходам между уровнями с различными значениями главного квантового числа n (эта картина хорошо описывается формулой Ридберга). Самой известной и удобной для наблюдений является линия Бальмера Hα, имеющая длину волны 656 нанометров и лежащая в области видимого спектра. Например, на этой линии астрономы наблюдают за далекими галактиками и распознают облака молекулярного газа, которые в большинстве своем как раз состоят из водорода. Следующие серии линий (Пашена, Брэкета, Пфунда и так далее) целиком лежат в инфракрасном диапазоне, а серия Лаймана расположена в области ультрафиолетового излучения. Это несколько усложняет наблюдения.

В то же время у молекул сложных соединений есть другой способ излучать кванты света, в каком-то смысле даже более простой. Связан он с тем, что вращательная энергия молекулы квантуется, что также позволяет им излучать в линиях (кроме того, они могут излучать и  непрерывный спектр). Энергия таких квантов света не очень большая, поэтому их частота лежит уже в радиодиапазоне. Один из самых простых вращательных спектров принадлежит молекуле угарного газа CO, по ней астрономы тоже часто распознают облака холодного газа, когда не могут разглядеть в них водород. Методы радиоастрономии позволили найти в молекулярных облаках также метанол, этанол, формальдегид, синильную и муравьиную кислоту, а также другие элементы. Например, именно с помощью радиотелескопа ученые алкоголь в хвосте кометы Лавджоя.

Что можно найти в космосе

Проще всего методы спектроскопии применять для изучения химического состава звезд. В этом случае астрономы исследуют спектры поглощения, а не излучения элементов. В самом деле, свет от них легко наблюдать, особенно в видимом диапазоне. Правда, химический состав звезд сам по себе обычно не очень интересен: по большей части они состоят из водорода и гелия с небольшой примесью тяжелых элементов.

Более тяжелые элементы образуются во вспышках сверхновых, и их тоже можно наблюдать. Например, некоторые ученые утверждают, что после недавно слияния двух нейтронных звезд должны были образоваться огромные количества золота, платины и других элементов из последних строк таблицы Менделеева. Но так или иначе, очень сложные или органические соединения в звездах существовать не могут, поскольку они обязательно распадаются из-за больших температур.

Другое дело - облака холодного межзвездного газа. Они очень сильно разрежены и излучают гораздо слабее, чем звезды, зато сами по себе гораздо больше. И состав у них более интересный. В них можно найти огромное число самых разных молекул - начиная от простых двухатомных и заканчивая относительно сложными многоатомными органическими соединениями. Среди сложных молекул особенно стоит выделить «пребиотические» соединения, например, аминоацетонитрил , который может участвовать в образовании глицина, простейшей аминокислоты. Некоторые ученые предполагают, что в молекулярных облаках может образоваться и рибоза, один из основных кирпичиков органической жизни. Если такие соединения попадут в благоприятные условия, это уже будет ступенькой для возникновения жизни.

Изображение туманности Ориона M42, полученное Коуровской астрономической обсерваторией УрФУ. Красный цвет - это результат рекомбинации в линии излучения Hα на длине волны 656,3 нанометра.

Чуть ближе к планетам

К сожалению, для определения химического состава экзопланет метод спектроскопии применить сложно. Все-таки для этого нужно зарегистрировать свет от них, а звезда, вокруг которой вращается планета, мешает это сделать, поскольку она светит намного ярче. Пытаться наблюдать за такой системой - все равно что смотреть на свет спички на фоне прожектора.

Тем не менее, некоторую информацию об экзопланете можно получить, не измеряя спектр ее излучения напрямую. Хитрость заключается в следующем. Если у планеты есть атмосфера, она должна поглощать часть излучения звезды, причем в разных спектральных диапазонах по-разному. Грубо говоря, на одной длине волны планета будет казаться чуть меньше, а на другой длине - чуть больше. Это позволяет строить предположения о свойствах атмосферы, в частности, о ее химическом составе. Такой способ наблюдений особенно хорошо работает на горячих, близко расположенных к звездам планетах, потому что их радиус проще измерять.

Кроме того, химический состав планеты должен быть связан с составом газопылевого облака, из которого она образовалась. Например, в облаках с большим отношением концентраций атомов углерода к атомам кислорода образующиеся планеты будут состоять преимущественно из карбонатов. С другой стороны, химический состав звезды, образовавшейся из такого облака, также должен отражать его состав. Это позволяет строить некоторые предположения, основываясь на изучении спектра одной только звезды. Так, астрономы из Йельского университета проанализировали данные о химическом составе 850 звезд и обнаружили, что в 60 процентах систем концентрации магния и кремния в звезде указывают на то, что рядом с ней могут находиться каменистые планеты, похожие на Землю. В оставшихся 40 процентах химический состав звезд говорит нам о том, что состав планет вокруг них должен существенно отличаться от земного.

Вообще говоря, в последнее время прямая спектроскопия особенно горячих планет на фоне тусклых звезд все-таки стала возможна благодаря возросшей точности измерительных приборов. В этом случае уже можно искать в их свете следы различных химических элементов и сложных соединений. Например, с помощью ИК-спектрографа CONICA, установленного на телескопе VLT и объединенного с системой адаптивной оптики NAOS, ученым удалось измерить спектр экзопланеты HR 8799 c, которая вращается вокруг белого карлика и разогрета так сильно, что сама излучает свет. В частности, из анализа ее спектра следовало, что в атмосфере планеты содержится меньше, чем ожидалось, метана и угарного газа. Также совсем недавно астрономы измерили спектр другого «горячего юпитера», в его атмосфере оксид титана. Тем не менее, непосредственные измерения спектра менее горячих каменистых планет (на которых существование жизни более вероятно) до сих пор представляет большую сложность.


Изображение системы HR 8799. Планета HR 8799 c находится в правом верхнем углу

Jason Wang et al / NASA NExSS, W. M. Keck Observatory


Состав планеты можно также определить косвенно, рассчитав ее плотность. Для этого нужно знать радиус и массу планеты. Массу можно найти, наблюдая за гравитационным взаимодействием планеты со звездой или другими планетами, а радиус оценить по изменению блеска звезды при прохождении планеты по ее диску. Очевидно, газовые планеты должны иметь меньшую плотность по сравнению с каменистыми. Например, средняя плотность Земли равна примерно 5,5 грамма на кубический сантиметр, и для поиска обитаемых планет астрономы ориентируются именно на это значение. В то же время плотность «самого рыхлого горячего юпитера» составляет 0,1 грамма на кубический сантиметр.


«Невозможные» соединения

С другой стороны, экзопланеты можно изучать и вовсе не выходя из лаборатории, как бы странно это ни звучало. Речь идет о моделировании (в основном численном) химических и физических процессов, которые должны на них происходить. Из-за того что условия на экзопланетах могут быть самые экзотические (простите за каламбур), вещества на них могут образоваться тоже самые необычные, «невозможные» в привычных для нас условиях.

Большинство открытых экзопланет относится к «горячим юпитерам» - сильно разогретым из-за небольшого расстояния до звезды газовым гигантам. Конечно, это не обязательно означает, что такие планеты преобладают в звездных системах, просто их легко найти. Температура атмосферы таких гигантов может превышать тысячу градусов по Цельсию, и состоит она в основном из паров силикатов и железа (при такой температуре оно начинает испаряться, но еще не кипит). В то же время, давление внутри этих планет должно достигать огромных значений, при которых водород и другие привычные для нас газы переходят в твердые агрегатные состояния. Эксперименты по моделированию подобных экстремальных условий проводятся давно, однако впервые металлический водород только в январе этого года.

С другой стороны, в недрах каменистых планет также могут достигаться большие давления и температуры, а «зоопарк» химических элементов там может быть даже больше. Например, по некоторым оценкам, давление внутри каменистых планет с массами в несколько земных масс может достигать значений до 30 миллионов атмосфер (внутри Земли давление не превышает четырех миллионов атмосфер). С помощью компьютерного моделирования удалось выяснить , что в таких условиях начинают образовываться экзотические соединения магния, кремния и кислорода (которых в составе каменистых планет должно быть много). Например, при давлениях более 20 миллионов атмосфер стабильными становится не только привычный для нас оксид кремния SiO 2 , но и «невозможные» SiO и SiO 3 . Также интересно, что в недрах особенно массивных планет (до 20 масс Земли) может образоваться MgSi 3 O 12 - оксид, обладающий свойствами электрического проводника.

Нестандартные условия можно моделировать не только на компьютере, но и в лаборатории, пусть и не для такого большого диапазона давлений и температур. С помощью алмазной наковальни можно получить давления до 10 миллионов атмосфер, как раз соответствующие условиям в недрах планет, а разогреть образец до высоких температур можно лазером. Эксперименты по моделированию таких условий действительно активно проводятся в последнее время. Например, в 2015 году группа ученых, в состав которой входили российские исследователи, экспериментально наблюдали образование пероксида магния MgO 2 уже при давлениях около 1,6 тысяч атмосфер и температурах больше двух тысяч градусов Цельсия. Подробно об исследованиях поведения вещества при больших давлениях вы можете прочитать в .


Рентгеновская спектроскопия образца, состоящего из атомов магния и кислорода, при давлении около десяти тысяч атмосфер и температуре около двух тысяч Кельвин. Пунктиром выделена область с повышенным содержанием кислорода.

S. Lobanov et al / Scientific Reports

***

В УрФУ есть группа ученых, которые занимаются изучением протопланетного вещества в дальнем космосе и Солнечной системе. Мы попросили ведущего специалиста Коуровской астрономической обсерватории УрФУ Вадима Крушинского более подробно рассказать об изучении экзопланет.

N +1: Зачем мы изучаем экзопланеты?

Вадим Крушинский: Еще 25 лет назад нам было известно о существовании единственной планетной системы - Солнечной. Теперь же мы уверены в том, что планеты есть у огромного числа звезд, возможно, почти у каждой звезды во Вселенной. Прогресс технологий получения и обработки данных привел к тому, что найти свою экзопланету может даже продвинутый любитель астрономии. Открытие очередного «горячего юпитера» - это открытие целой планетной системы, просто мы видим только самую заметную ее часть. Планеты меньшего размера или находящиеся дальше от родительской звезды открываются гораздо реже, это эффект наблюдательной селекции.

Вадим Крушинский в составе группы ученых Уральского федерального университета работает над проектом по исследованию протопланетного вещества в дальнем космосе, Солнечной системе и на Земле.

Это один из шести прорывных научных проектов университета, им занимается стратегическая академическая единица (САЕ) - Институт естественных наук и математики УрФУ - вместе с академическими и индустриальными партнерами из России и других стран. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

Единичный эксперимент не позволяет делать выводы о наблюдаемом явлении. Эксперимент должен быть повторен многократно и независимо. Каждая открытая экзопланетная система - это отдельный независимый эксперимент. И чем больше их известно, тем надежнее прослеживаются общие законы происхождения и эволюции планетных систем. Нам необходимо набирать статистику!

Что же можно узнать об экзопланетах, наблюдая за ними с таких больших расстояний?

Прежде всего нужно определить свойства родительской звезды. Это позволяет вычислить размеры планет, их массу и радиусы орбит. Зная светимость родительской звезды и радиус орбиты, можно оценить температуру поверхности экзопланеты. Кроме того, атмосферы планет имеют разную прозрачность в разных спектральных диапазонах (об этом писал еще Ломоносов). Для наблюдателя это выглядит как разный диаметр планеты при наблюдении в разных фильтрах. Это позволяет обнаружить атмосферу и оценить ее толщину и плотность. Свет родительской звезды, прошедший через атмосферу планеты во время транзита, несет информацию о составе ее атмосферы. А во время вторичного затмения, когда планета прячется за свою звезду, мы можем наблюдать изменения спектра, связанные с отражением от атмосферы и поверхности планеты. Так же, как и у Луны, у экзопланет можно наблюдать фазы. Если изменения блеска системы, вызванные этим эффектом, не постоянны, то это говорит о том, что альбедо планеты (способность отражать свет) меняется. Например, вследствие движения облаков в ее атмосфере.

Свойства экзопланет должны быть связаны со свойствами родительских облаков. Изучая материю на стадии звездообразования, мы вносим вклад в понимание эволюции планетных систем. К сожалению, Земля претерпела значительные изменения в ходе истории, и уже мало напоминает то протопланетное вещество, из которого когда-то родилась. Но совсем рядом с нами летают метеориты и кометы. Некоторые из них даже падают на Землю и попадают в лаборатории. До каких-то из них могут долететь космические аппараты. Прямо перед нами отличный объект исследования! Остается только доказать, что и другие планетные системы эволюционировали так же, как наша.

Можно ли найти жизнь на других планетах?

Для этого нужно обнаружить биомаркеры - проявления жизнедеятельности организмов. Лучшим биомаркером были бы передачи условного «Первого канала», но сойдет и наличие кислорода. Без жизни кислород на Земле был бы связан и исчез из атмосферы за десяток тысяч лет. Обнаружив кислород в атмосферах экзопланет, мы сможем утверждать, что не одиноки во Вселенной. Как его найти, было рассказано выше. Но вот только приборов с достаточной чувствительностью пока нет. Прорыв в этом направлении ожидается после запуска космического телескопа им. Джеймса Вебба (JWST).

Что могут сделать в этой области ученые из России и, в частности, из УрФУ?

Несмотря на то, что в плане изучения экзопланет Россия отстает от остального научного сообщества, у нас есть возможность сократить это отставание. Относительно малобюджетные программы по поиску экзопланетных систем (пилотный проект KPS Коуровской обсерватории УрФУ) позволят сделать первый шаг и помогут в наборе данных для статистического анализа. Высокоточные фотометрические измерения можно проводить и на имеющемся оборудовании, это позволяет искать атмосферы у некоторых экзопланет. Спектральные наблюдения во время транзитов и вторичных затмений относительно доступны для крупнейших телескопов России. Что нужно сделать для старта этих программ - найти заинтересованных людей и оплатить их работу. Немного вложиться в оборудование.

Второе направление - моделирование и интерпретация наблюдаемых эффектов. Это может быть как теоретическая работа, так и экспериментальная - исследование поведения и свойств образцов в условиях космоса и сравнение с наблюдаемыми эффектами. Для этого необходимо создание установки, имитирующей условия космического пространства. В качестве образцов можно использовать метеориты из коллекции УрФУ.

Дмитрий Трунин

— Зверь и птица, звёзды и камень — все мы одно, все одно... — бормотала Кобра, опустив свой клобук и тоже раскачиваясь. — Змея и ребёнок, камень и звезда — все мы одно...

Памела Треверс. «Мэри Поппинс»

Чтобы установить распространённость химических элементов во Вселенной, нужно определить состав её вещества. А оно сосредоточено не только в крупных объектах — звёздах, планетах и их спутниках, астероидах, кометах. Природа, как известно, не терпит пустоты, поэтому и космическое пространство заполнено межзвёздными газом и пылью. К сожалению, нам для непосредственного изучения доступно лишь земное вещество (и только то, которое «под ногами») да очень небольшое количество лунного грунта и метеориты — обломки некогда существовавших космических тел.

Как же определить химический состав объектов, удалённых от нас на тысячи световых лет? Получать всю необходимую для этого информацию стало возможным после разработки в 1859 г. немецкими учёными Густавом Кирхгофом и Робертом Бунзеном метода спектрального анализа. А в 1895 г. профессор Вюрцбургского университета Вильгельм Конрад Рентген случайно обнаружил неизвестное излучение, которое учёный назвал Х-лучами (ныне они известны как рентгеновские). Благодаря этому открытию появилась рентгеновская спектроскопия, которая позволяет непосредственно по спектру определять порядковый номер элемента.

В основе спектрального и рентгеноспектрального анализа лежит способность атомов каждого химического элемента излучать или поглощать энергию в виде волн строго определённой, только ему одному свойственной длины, что и улавливают специальные приборы — спектрометры. Атом испускает волны видимого света при переходах электронов на внешних уровнях, а за рентгеновское излучение отвечают более «глубинные» электронные слои. По интенсивности определённых линий в спектре и узнают содержание элемента в том или ином небесном теле.

К концу XX в. исследованы спектры многих объектов во Вселенной, накоплен огромный статистический материал. Разумеется, данные о химическом составе космических тел и межзвёздного вещества не окончательны и постоянно уточняются, но благодаря уже собранным сведениям удалось установить среднее содержание элементов в космосе.

Все тела во Вселенной состоят из атомов одних и тех же химических элементов, но содержание их в разных объектах различно. При этом наблюдаются интересные закономерности. Лидеры по распространённости — водород (его атомов в космосе — 88,6 %) и гелий (11,3 %). На долю остальных элементов приходится всего 1 %! В звёздах и планетах распространены также углерод, азот, кислород, неон, магний, кремний, сера, аргон и железо. Таким образом, лёгкие элементы преобладают. Но есть и исключения. Среди них — «провал» в области лития, бериллия и бора и низкое содержание фтора и скандия, причина которого до сих пор не установлена.

Выявленные закономерности можно представить в виде графика. Внешне он напоминает старую пилу, зубья которой сточились по-разному, а некоторые вообще сломались. Верхушки зубьев соответствуют элементам с чётными порядковыми номерами (т. е. тем, у которых количество протонов в ядрах чётное). Данная закономерность носит название правила Олдо — Харкинса в честь итальянского химика Джузеппе Оддо (1865—1954) и американского физика и химика Уильяма Харкинса (1873— 1951). Согласно этому правилу, распространённость элемента с чётным зарядом больше, чем его соседей с нечётным количеством протонов в ядре. Если же у элемента и количество нейтронов чётное, то он встречается ещё чаше и изотопов образует больше. Во Вселенной существует 165 стабильных изотопов, у которых и число нейтронов, и число протонов чётное; 56 изотопов с чётным числом протонов и нечётным — нейтронов; 53 изотопа, у которых число нейтронов чётное, а протонов — нечётное; и всего 8 изотопов с нечётным количеством и нейтронов, и протонов.

Бросается в глаза и ещё один максимум, приходящийся на железо — один из наиболее распространённых элементов. На графике его зубец возвышается, как Эверест. Это связано с большой энергией связи в ядре железа — самой высокой среди всех химических элементов.

А вот и сломанный зуб у нашей пилы — на графике нет значения распространённости технеция, элемента № 43, вместо него здесь пробел. Казалось бы, что в нём такого особенного? Технеций находится в середине периодической системы, распространённость его соседей подчиняется общим закономерностям. А дело вот в чём: этот элемент просто-напросто давно «закончился», период полураспада его самого долгоживущего изотопа 2,12.10 6 лет. Технеций даже не был открыт в традиционном понимании этого слова: его синтезировали искусственно в 1937 г., и то случайно. Но вот что интересно: в 1960 г. в спектре Солнца была обнаружена линия «несуществующего» элемента № 43! Это блестящее подтверждение того факта, что синтез химических элементов в недрах звёзд продолжается и поныне.

Второй сломанный зуб — отсутствие на графике прометия (№ 61), и объясняется оно теми же причинами. Период полураспада самого устойчивого изотопа этого элемента очень мал, всего 18 лет. И пока нигде в космосе он не дал о себе знать.

Совсем нет на графике и элементов с порядковыми номерами больше 83: все они тоже очень нестабильны, и в космосе их исключительно мало.

Лучшие статьи по теме