Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Стены 
  • Как собрать и изготовить солнечный коллектор своими руками. Солнечный воздушный коллектор своими руками Солнечный воздушный коллектор из корпуса потолочного светильника

Как собрать и изготовить солнечный коллектор своими руками. Солнечный воздушный коллектор своими руками Солнечный воздушный коллектор из корпуса потолочного светильника

Солнечные воздушные коллекторы (Рис.1) приобретают все большее число сторонников. Это решение, которое открывает хорошие возможности за сравнительно небольшие деньги для улучшения атмосферы в помещениях. Они действительно заслуживают того, чтобы на них обратили более пристальное внимание.



Солнечный воздушный коллектор , применительно к частному домовладению, выполняет три функции. Первая – дополнительный обогрев помещения. Вторая - вентиляция и фильтрация воздуха в помещении. Третья – осушение помещения при периодическом отоплении его в холодное время.

В работе солнечных воздушных коллекторов практически нет ограничений – электричества и газа не нужно, воздух в качестве теплоносителя не закипает и не замерзает. Такого понятия как «стагнация гелиосистемы» как в жидкостных коллекторах, просто нет.

Быстрый прогрев воздуха в помещении до нужной температуры – тоже одна из особенностей солнечных воздушных коллекторов. Несмотря на то, что воздух имеет меньшую теплопроводность в 28 раз и меньшую удельную теплоемкость в 4 раза, чем вода, он как теплоноситель подвижен, хорошо регулируется (по температуре и количеству). Воздух обеспечивает быстрое изменение температуры и более равномерное распределение тепла внутри помещений. Он безопасен в пожарном отношении. Нагретый воздух можно распределять по существующим каналам вентиляционной системы.

Принцип действия.

Солнечный воздушный коллектор (СВК) – это тепловой абсорбер, в котором в качестве рабочего тела (теплоносителя) используется воздух, а в качестве источника тепла – солнечное излучение. Холодный воздух попадает в систему каналов, где он нагревается контактируя с поверхностью абсорбера, нагретой солнечным теплом, и затем поступает в обогреваемое помещение.



Солнечные воздушные коллектора делятся на три основные группы по системе циркуляции воздуха: внутренняя циркуляция/рециркуляция (забор холодного воздуха происходит внутри отапливаемого помещения) (Рис.2б), внешняя циркуляция (забор холодного воздуха осуществляется с улицы) (Рис.2а), комбинированная циркуляция (забор холодного воздуха может осуществляться из обоих источников по очереди или одновременно) (Рис.2в).

По способу организации теплового потока в солнечном воздушном коллекторе эти устройства делятся на два типа: с естественной циркуляцией (пассивный тип) и с принудительной циркуляцией (активный тип). В первом типе, в организации движения воздуха действуют законы конвекции и гравитации, во втором типе, движение воздуха осуществляется при помощи вентилятора.

В современных солнечных воздушных коллекторах устанавливают миниатюрную фотоэлектрическую (солнечную) панель, от которой происходит питание вентилятора 12В/12Вт постоянного тока. Это снижает пожароопасность системы до нуля, по сравнению с питанием вентилятора от 220В домашней сети.

Устройство.

Солнечные воздушные коллекторы, продаваемые на рынке в России, представляют собой плоские коробчатые устройства (похожи на плоские водяные коллектора), состоящие из: алюминиевой рамы, фронтального прозрачного стекла, абсорбера (металлическая пластина окрашенная в черный или темно-синий цвет, иногда гофрированной и/или с перфорацией), коробчатых воздуховодов, утеплителя (плита из стеклянной или базальтовой ваты), пластиковой задней стенки, вентилятора, фотоэлектрической мини-панели, обратного воздушного клапана, выключателя и провода, вытяжного блока и крепежных элементов (Рис.3).


Назначение.

Первая функция солнечных воздушных коллекторов это обогрев помещения. Холодный воздух находящийся в нижней части помещения или снаружи попадает в коллектор, где нагревается и через верхний вытяжной блок возвращается в помещение (Рис.4).



Одновременно с выполнением обогрева помещения при использовании наружного воздуха воздушный солнечный коллектор выполняет вторую функцию – вентиляция помещения и приток свежего воздуха. На выходе из воздуховода коллектора в помещение устанавливается фильтр, тогда даже при рециркуляционном режиме, можно получить очистку воздуха в помещении.


Теперь рассмотрим третью функцию солнечного воздушного коллектора, за что его полюбили дачники и прочие владельцы строений, в которых проживание осуществляется не постоянно.

Солнечный воздушный коллектор не дает отсыревать помещениям, система отопления в которых работает периодически. Эту проблему не решить простым проветриванием помещений, так как влажность холодного воздуха выше, а его влагоабсорбционные свойства ниже. Достаточно взглянуть на Психометрическую диаграмму Молье и мы увидим, что когда воздушный коллектор забирает с улицы воздух с температурой -10°С и влажностью 70%, он нагревает воздух на 15°С-40°С, пусть до температуры +10°С, то влажность этого воздуха уменьшается до 15%, а влагоабсорбционные свойства подаваемого в помещение воздуха увеличиваются в 7-9 раз (Рис.5).

Соответственно СВК предохраняет дом от появления плесени, неприятного запаха, от промерзания и соответственно преждевременного разрушения отсыревших конструктивных элементов.

Очень актуальна эта функция воздушного солнечного коллектора так же для бань (Рис.6) и крытых бассейнов (Рис.7).



Необходимо упомянуть и об еще одной функции воздушных солнечных коллекторов, которая не сильно актуальна для частного домовладения в наших широтах, но всё же.

Помимо генерации тепла солнечный воздушный коллектор может выполнять барьерные и теплозащитные функции.

В этом случае коллектор занимает всю поверхность стены или крыши. Наружная поверхность коллектора и стена здания образуют так называемый фасад с двойной оболочкой. Таким путем можно «накрыть» стены, крыши и наклонные элементы зданий (Рис.8).


Наружная часть такого фасада выполняет с одной стороны барьерную функцию (защита внутренней части – т.е. собственно стены здания от намокания), с другой – это теплопоглощающая поверхность, хорошо пропускающая тепло на свою внутреннюю сторону. Ее обычно выполняют гофрированной с мелкой перфорацией.

Такой фасад с двойной оболочкой внутри разделен на вертикальные секции. Наружная поверхность фасада нагревается солнечным теплом и передает это тепло воздуху между наружной и внутренней стенками. Нагретый воздух активно поднимается вверх, где его отбирают внутрь помещений для подогрева здания. Очень часто, как и в обычных солнечных воздушных коллекторах, горячий воздух здесь используется в сочетании с системой вентиляции – непосредственно или косвенно. Восходящий поток горячего воздуха в полости фасада с двойной оболочкой одновременно подсушивает стену здания и улучшает его теплоизоляционные характеристики.

Эти свойства высоко оценили в странах с холодным и/или сырым климатом. Солнечный воздушный коллектор типа «солнечная стена» здесь не столько используется для отопления или подогрева воздуха в системе вентиляции, сколько выполняет энергосберегающие функции.

У нас в стране распространение получили индивидуальные солнечные воздушные коллектора не большой площади в применении к сезонным, периодически посещаемым и потому не постоянно отапливаемым объектам: дачи, бани, гаражи, мастерские, студии, склады.

В конце текста необходимо сказать немного о недостатках солнечного воздушного коллектора:

  • воздушный солнечный коллектор работает только при наличии солнца, эффективность его в пасмурные дни будет около нулевой.
  • при низкой температуре, даже в солнечный день, лучше переключать коллектор на режим внутренней циркуляции.
  • при установке коллектора необходимо сверлить одно-два больших отверстия в несущей стене или в крыше (в зависимости от места установки).

Рис.9 Примеры различных вариантов крепления коллекторов на стене дома.


Однако, применяя воздушный солнечный коллектор, мы можем решить следующие проблемы (Рис.9):

  • Вентиляция и фильтрация воздуха в помещениях.
  • Поддержание сухой атмосферы в помещениях, в которых не постоянно работает отопление.
  • Дополнительное отопление помещений.

В наше время, когда исчерпываются природные ресурсы, люди все чаще ищут альтернативные источники энергии. А что может быть лучше энергии солнца – общедоступной, неисчерпаемой и, если можно так выразиться, дармовой?

И вот совсем недавно при изучении возможного применения солнечного света учеными был изобретен воздушный коллектор – прибор, поглощающий солнечную энергию и превращающий ее в тепло, которое впоследствии передается теплоносителю. Зачастую теплоносителем выступает жидкость, но нередко используется и воздух – более того, бывают ситуации, когда воздушные приборы даже более эффективны.

Вполне очевидно, что главным отличием коллектора является используемый им в работе теплоноситель – в данном случае обыкновенный атмосферный воздух. В принципе, такое устройство выполняется сегодня в двух вариантах:

  • в виде плоской перфорированной или гофрированной панели ;
  • в виде системы металлических труб , хорошо проводящих тепло.

Воздух здесь подогревается при контакте с металлом, а ребра на поверхности панели при этом лишь увеличивают теплоотдачу. Всю конструкцию желательно установить на южной стене здания, а также качественно теплоизолировать. Характерно то, что циркуляция теплоносителя бывает естественной и принудительной (с использованием вентиляторов).

Воздушные коллекторы могут работать при значительно меньшей температуре, чем жидкостные. К примеру, в обычной гелиосистеме оптимальная температура для работы коллектора – 50°С и выше, в то время как воздушным хватит и 25°С. Это позитивно сказывается на эффективности описываемых нами устройств, ведь чем ниже температура, тем меньшие теплопотери.

Сферы применения

Столь низкая популярность приборов объясняется очень просто: у воздуха достаточно низкая теплопроводность . Тем не менее, гелиосистемы воздушного типа широко используются:

  • в системах рекуперации воздуха;
  • в осушительных системах;
  • в воздушном обогреве дома.

Получается, что воздушные коллекторы вряд ли можно считать полноценной заменой жидкостных, но благодаря им вполне можно сократить коммунальные расходы.

Преимущества и недостатки

У воздушных гелиосистем, как и у всех творений рук человека, есть свои сильные и слабые стороны. К преимуществам можно отнести:

  • эффективность в воздушной сушке;
  • небольшую стоимость;
  • простую конструкцию.

Но есть и недостатки:

  • воздушными коллекторами нельзя нагревать воду;
  • они весьма габаритны (ввиду незначительной теплоемкости);
  • у них скромный КПД.

Обратите внимание! Чтобы повысить эффективность воздушных гелиосистем, их устанавливают в стены (южные, как мы помним) еще при строительстве здания.

Вы можете сделать такой прибор самостоятельно, благо конструкция его, как уже отмечалось, достаточно простая. Для этого потребуются дешевые и доступные материалы (некоторые даже умудряются использовать жестяные банки).

Но помните: такие коллекторы достаточно габаритны , поэтому вполне вероятно, что придется соорудить конструкцию на всю стену.

Изготовление прибора из водосточных труб

Такой прибор уж точно лучше сделать на всю стену. Осенью и весной он поможет вам существенно сэкономить на отоплении. Материалы подбирайте, учитывая габариты будущей конструкции.

Что потребуется в работе


Технология изготовления

Для создания коллектора выполните следующие процедуры.

Первый этап. Сначала сделайте небольшой деревянный короб в виде открытого ящика. Его глубина должна быть чуть больше высоты водопроводных труб.

Второй этап . Надежно изолируйте заднюю и торцевые стенки. Поверх минеральной ваты уложите алюминиевый лист, к которому, в свою очередь, хомутами прикрепите трубы.

Обратите внимание! Для улучшения циркуляции воздуха с одной стороны короба трубы должны отступать приблизительно на 15 см от торца.

По краям трубы фиксируйте деревянной перегородкой, где предварительно проделайте крепежные отверстия в соответствующих местах.

Третий этап . Ввиду того что входное и выходное отверстия будут находиться с одной стороны конструкции, проделайте на противоположной стороне несколько деревянных перегородок для того, чтобы разделять потоки воздуха.

Четвертый этап . После монтажа окрасьте коллектор в черный цвет. Для передней панели отлично подойдет сотовый поликарбонат.

Помните: воздушный коллектор в собранном виде весит достаточно много , поэтому для монтажа вам понадобится несколько помощников. При установке используйте прочные и устойчивые опоры.

Затем подключите коллектор к вентиляции здания посредством утепленных воздуховодов. Также позаботьтесь о канальном вентиляторе, который будет нагнетать воздух в помещение.

Изготовления прибора из профнастила

Это еще более простая конструкция солнечного коллектора. Вы соорудите ее гораздо быстрее.

Первый этап . Сначала сделайте деревянный короб так же, как в предыдущем варианте. Далее по периметру тыльной стенки проложите брус (приблизительно 4х4 см), а на дно уложите минеральную вату.

Второй этап . Проделайте выходное отверстие в дне.

Третий этап . Уложите на брус профнастил и перекрасьте последний в черный цвет. Разумеется, если изначально он был другого цвета.

Четвертый этап . Сделайте перфорацию по всей площади профнастила для притока воздуха.

Пятый этап . При желании можете остеклить всю конструкцию поликарбонатом – это повысит температуру нагрева абсорбера. Но не забывайте о том, что нужно предусмотреть еще и выходное отверстие для притока воздуха извне.

Изготовление коллектора из пивных банок

Это практичная и дешевая альтернатива описанным выше моделям гелиосистем. Она характеризуется низкой себестоимостью, ведь главное – запастись достаточным количеством жестяных банок (это будет нетрудно для любителей «коки» или баночного пива).

Обратите внимание! Банки обязательно должны быть из алюминия – этот металл обладает высоким теплообменом и устойчивостью к коррозии. Поэтому при подготовке проверьте каждую банку с помощью магнита.

Технология изготовления

Первый этап. Сначала проделайте в дне каждой банки по три отверстия, каждое размером с ноготь. Сверху сделайте вырез в форме звезды и отогните края наружу – это улучшит турбулентность подогретого воздуха.

Второй этап . Далее обезжирьте банки и сложите их в трубы соответствующей длины (в зависимости от размеров стены). Дно и крышка будут почти идеально прилегать друг к другу, а незначительные зазоры между ними обработайте силиконом.

Обратите внимание! Силикон должен выдерживать перманентно высокую температуру, иначе ваша конструкция рассыплется в процессе эксплуатации.

Не смещайте банки, пока силикон полностью не высохнет. Можете использовать для этого самодельные шаблоны – две доски, сбитые под углом (своего рода желоб). Это обезопасит трубы от боковых смещений.

Третий этап . Далее приступите к сборке корпуса. Для задней стенки используйте лист обычной фанеры необходимого размера. Можете сверху и снизу короба установить специальные деревянные планки с отверстиями под трубы – так вы добьетесь более надежной фиксации.

Четвертый этап . Уложите трубы в короб и закрепите все тем же силиконовым герметиком. Потом выкрасите их черной краской – темные цвета, как известно, притягивают солнечные лучи. Между трубами проложите минеральную вату. Когда краска высохнет, закройте коллектор листом сотового поликарбоната.

В качестве заключения

В итоге хотелось бы отметить, что описанные нами конструкции гелиосистем позволяют добиться внушительного прироста температуры – зачастую в солнечный день в помещении на 25–30°С теплее, чем снаружи. Вместе с тем существенно улучшается и микроклимат в помещении, поскольку обеспечивается перманентное поступление свежего воздуха.

И еще один важный момент: такая конструкция не накапливает тепло, поэтому ночью она будет не нагревать, а охлаждать воздух в помещении. Эту проблему можно решить укрыванием коллектора после захода солнца.

Видео – Солнечный коллектор из алюминиевых банок

Материалы и инструменты для изготовления:
- гофрированный алюминиевый воздуховод (диаметр 80 мм, длина 10 метров);
- короб размером 90Х90 см (можно сделать самому из досок);
- фольгированный пенополистирол (толщина 25 мм);
- проволока;
- черная термостойкая краска (краска для покраски глушителей);
- газета;
- стекло;
- канальный вентилятор на 12В (подойдет кулер от компьютера);
- солнечная батарея (не обязательно);
- минимальный набор инструментов.


Процесс изготовления солнечного коллектора:

Шаг первый. Создаем короб и укладываем абсорбер

Прежде всего, нужно изготовить короб, его можно сделать из доски. Для этого понадобится пила, молоток и гвозди. В качестве днища можно использовать лист ДВП или фанеру. Когда короб будет собран, его нужно утеплить, для этих целей используется фольгированный пенополистирол толщиной в 25 мм. Им нужно обклеить внутреннюю часть короба, чтобы повысить производительность коллектора. Также нужно будет утеплить и днище короба, для этого нужно вырезать цельный кусок пенополистирола нужно формы и размеров и приклеить ко дну короба.


Далее можно укладывать абсорбер. Для этого нужно взять гофрированный воздуховод и уложить его змейкой, как указано на фото. Чтобы это было делать удобно, змеевик можно фиксировать медной или алюминиевой проволочкой к боковой стенке короба.


Помимо всего прочего в коробе нужно будет вырезать два отверстия, и вставить в них концы воздуховода. Через одно отверстие в абсорбер будет заходить холодный воздух, а через другое будет выходить уже теплый.

Шаг второй. Покраска абсорбера
Для того чтобы абсорбер мог нагреваться, его нужно обязательно покрасить матовой краской черного цвета, в противном случае солнечные лучи будут отражаться от змеевика и коллектор не будет работать. Для этих целей подходит краска, с помощью которой красят автомобильные глушители, она выдерживает высокие температуры.


Перед покраской боковые стенки короба нужно обязательно накрыть газетой, их красить не нужно. Дело в том, что на них нанесена фольга и, по мнению автора, солнечные лучи будут от них отражаться и затем попадать на абсорбер. В принципе, большой разницы, если их покрасить не будет, так как в этом случае стенки будут нагреваться, и как следствие будет повышаться температура воздуха внутри коллектора.

Шаг третий. Принудительная вентиляция коллектора

В принципе, если расположить коллектор выходным отверстием вверх, а входным вниз, в нем будет происходить естественная циркуляция воздуха, поэтому воздушный насос для этой системы не нужен как таковой. Но если есть желание повысить производительность, коллектор можно оснастить кулером или вентилятором. Автор использовал вентилятор на 12 Вольт в сочетании с солнечной батареей. То есть, когда будет светить солнце, вентилятор сам будет запускаться и улучшать циркуляцию воздуха в коллекторе. Вентилятор устанавливается на вход в коллектор и работает на «вдув», если сделать все наоборот, он быстро придет в негодность от перегрева.

Удорожание традиционных источников энергии побуждает собственников частных домов подыскивать альтернативные варианты обогрева жилья и нагрева воды. Согласитесь, финансовая составляющая вопроса отыграет не последнюю роль при выборе отопительной системы.

Один из наиболее перспективных способов энергообеспечения – преобразование солнечного излучения. Для этого задействуют гелиосистемы. Понимая принцип их устройства и механизм работы, сделать солнечный коллектор для отопления своими руками не составит большого труда.

Мы расскажем вам о конструктивных особенностях гелиосистем, предложим простую схему сборки и опишем материалы, которые можно задействовать. Этапы работ сопровождаются наглядными фотографиями, материал дополнен видео-роликами о создании и вводе в эксплуатацию самодельного коллектора.

Современные гелиосистемы – один из получения тепла. Они применяются в качестве вспомогательного отопительного оборудования, перерабатывающего солнечное излучение в полезную владельцам дома энергию.

Они способны полностью обеспечить горячее водоснабжение и отопление в холодное время года только в южных регионах. И то, если занимают достаточно большую площадь и установлены на открытых, не затененных деревьями площадках.

Несмотря на большое количество разновидностей, принцип работы у них одинаковый. Любая представляет собой контур с последовательным расположением приборов, и поставляющих тепловую энергию, и передающих ее потребителю.

Основными рабочими элементами являются или солнечные коллекторы. Технология на фотопластинах несколько сложнее, чем трубчатого коллектора.

В этой статье мы рассмотрим второй вариант – коллекторную гелиосистему.

Солнечные коллекторы пока служат вспомогательными поставщиками энергии. Полностью переключать отопление дома на гелиосистему опасно из-за невозможности прогнозировать четкое количество солнечных дней

Коллекторы представляют собой систему трубок, соединенных последовательно с выходной и входной магистралью или выложенных в виде змеевика. По трубкам циркулирует техническая вода, воздушный поток или смесь воды с какой-либо незамерзающей жидкостью.

Циркуляцию стимулируют физические явления: испарение, изменение давления и плотности от перехода из одного агрегатного состояния в другое и др.

Сбор и аккумуляция солнечной энергии производится абсорберами. Это либо сплошная металлическая пластина с зачерненной наружной поверхностью, либо система отдельных пластин, присоединенных к трубкам.

Для изготовления верхней части корпуса, крышки, используются материалы с высокой способностью к пропусканию светового потока. Это может быть оргстекло, подобные полимерные материалы, закаленные виды традиционного стекла.

Для того чтобы исключить потери энергии с тыльной стороны прибора в короб укладывается теплоизоляция

Надо сказать, что полимерные материалы довольно плохо переносят влияние ультрафиолетовых лучей. Все виды пластика имеют достаточно высокий коэффициент теплового расширения, что часто приводит к разгерметизации корпуса. Поэтому использование подобных материалов для изготовления корпуса коллектора стоит ограничить.

Вода в качестве теплоносителя может применяться только в системах, предназначенных для поставки дополнительного тепла в осенне/весенний период. Если планируется круглогодичное использование гелиосистемы перед первым похолоданием техническую воду меняют на смесь ее с антифризом.

Если солнечный коллектор устанавливается для обогрева небольшого строения, не имеющего связи с автономным отоплением коттеджа или с централизованными сетями, сооружается простейшая одноконтурная система с нагревательным прибором в начале ее.

В цепочку не включают циркуляционные насосы и нагревательные устройства. Схема предельно проста, но работать она может лишь солнечным летом.

При включении коллектора в двухконтурное техническое сооружение все гораздо сложнее, но и диапазон пригодных для применения дней существенно увеличен. Коллектор обрабатывает только один контур. Преобладающая нагрузка возлагается на основной отопительный агрегат, работающий на электроэнергии или любом виде топлива.

Домашние мастера изобрели более дешевый вариант – спиральный теплообменник из .

Интересное бюджетное решение – абсорбер гелиосистемы из гибкой полимерной трубы. Для соединения с устройствами на входе и выходе применяются подходящие фитингиВыбор подручных средств, из которых можно изготовить теплообменник солнечного коллектора, достаточно широк. Это может быть теплообменник старого холодильника, полиэтиленовые водопроводные трубы, стальные панельные радиаторы и пр.

Важным критерием эффективности выступает теплопроводность материала, из которого изготовлен теплообменник.

Для самостоятельного изготовления оптимальным вариантом является медь. Она обладает теплопроводностью, которая составляет 394 Вт/м². У алюминия этот параметр варьируется от 202 до 236 Вт/м².

Однако большая разница в параметрах теплопроводности между медными и полипропиленовыми трубами вовсе не означает, что теплообменник с медными трубами будет выдавать в сотни раз большие объемы горячей воды.

При равных условиях производительность теплообменника из медных труб будет на 20% эффективнее, нежели производительность металлопластиковых вариантов. Так что теплообменники, изготовленные из полимерных труб, имеют право на жизнь. К тому же такие варианты обойдутся гораздо дешевле.

Вне зависимости от материала труб, все соединения как сварные, так и резьбовые, должны быть герметичны. Трубы можно располагать как параллельно друг к другу, так и в виде змеевика.

Схема по типу змеевика уменьшает количество соединений – это снижает вероятность протечек и обеспечивает более равномерное движение потока теплоносителя.

Верх короба, в котором находится теплообменник, закрывается стеклом. В качестве альтернативы можно использовать современные материалы, типа акрилового аналога или монолитного поликарбоната. Светопрозрачный материал может быть не гладким, а рифленым или матовым.

Выводы и полезное видео по теме

Процесс изготовления элементарного солнечного коллектора:

Как собрать и ввести в эксплуатацию гелиосистему:

Естественно, самостоятельно сделанный солнечный коллектор не сможет конкурировать с промышленными моделями. Используя подручные материалы, довольно сложно добиться высокого КПД, которым обладают промышленные образцы. Но и финансовые затраты будут гораздо меньше по сравнению с приобретением готовых установок.

Экология потребления.Усадьба:Солнечный воздушный коллектор, о строительстве которого пойдет речь, является нечто средним между воздушным коллектором с лабиринтом и коллектором из водосточных труб. Основным материалом для изготовления солнечного воздушного коллектора является гофрированный алюминиевый воздуховод.

С приходом холодов, каждый задумывается об обогреве своего жилья, подсобных помещений, теплиц и т.д., однако с каждым годом цены на энергоносители постоянно растут, и наибольшая статья расходов в холодное время года как раз приходится на отопление. Однако эту статью расходов можно уменьшить, если в качестве дополнительного отопления использовать бесплатную энергию солнца, при помощи нехитрого устройства – солнечного воздушного коллектора, который можно изготовить своими руками.

Солнечный воздушный коллектор, о строительстве которого пойдет речь, является нечто средним между воздушным коллектором с лабиринтом и коллектором из водосточных труб.

Основным материалом для изготовления солнечного воздушного коллектора является гофрированный алюминиевый воздуховод преимущество, которого заключается в том, что гофра имеет:

Большую площадь наружной поверхности на единицу длины в отличие от гладкой трубы,

За счет неровности поверхности, внутри трубы создается турбулентное движение воздуха, который в свою очередь лучше прогревается.

В данном солнечном воздушном коллекторе использовался алюминиевый гофрированный воздуховод диаметром 80мм. и длиной 10 метров. Вся эта труба поместилась в коробе размером 90х90см.

В качестве утеплителя для задней и боковых стенок, был выбран фольгированный пенополистирол толщиной 25мм. В принципе из этого материала и был изготовлен первоначальный короб.


Чтобы работать с гофрой было удобно, изгибы гофры необходимо фиксировать проволокой к боковой стенке.


Когда гофра уложена полностью, можно приступить к покраске воздуховода. Для этих целей будем использовать термостойкую черную краску в баллончиках, которую можно приобрести на авторынке (для покраски глушителей).


Боковые стенки воздушного коллектора, будут служить отражателями (поскольку на них нанесена алюминиевая фольга), поэтому их окрашивать не стоит и при покраске необходимо облепить газетами.

Поскольку пенополистирол, не особо прочен, для его защиты необходимо будет собрать более прочный корпус из дерева и фанеры, и всю конструкцию накрыть стеклом.

Для принудительной вентиляции был использован канальный вентилятор, но вполне можно использовать и кулер от компьютера. Вентилятор был выбран на 12В из тех соображений, чтобы его можно было подключить к солнечной батареи.

Чтобы высокая температура, негативным образом не воздействовала на вентилятор, его необходимо устанавливать на вход воздушного коллектора.


Испытания данного солнечного воздушного коллектора производились при окружающей температуре 17° С, и уже через полчаса, температура достигла своего максимума 39,5° С. Это конечно маловато, но чего можно требовать от коллектора площадью 0.81 м.кв.

Такая площадь для отопления в зимний период будет маловата, поэтому если вы желаете, получить теплый воздух достаточный для обогрева помещения, при низких температурах за окном, следует увеличить площадь воздушного коллектора как минимум в 4 раза. Кроме того, целесообразно, чтобы забор воздуха происходил из помещения, а не с улицы, чтобы не тратить лишнюю энергию на прогрев очень холодного воздуха. опубликовано econet.ru

Лучшие статьи по теме