Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Стены
  • Путь метаболизма аминокислот. Метаболизм аминокислот: получение энергии в виде АТФ, образование глюкозы и кетоновых тел. Нарушение метаболизма тирозина: алкаптонурия и альбинизм

Путь метаболизма аминокислот. Метаболизм аминокислот: получение энергии в виде АТФ, образование глюкозы и кетоновых тел. Нарушение метаболизма тирозина: алкаптонурия и альбинизм

Тема 1. РОЛЬ БЕЛКОВ В ПИТАНИИ. ПЕРЕВАРИВАНИЕ БЕЛКОВ

Практическая значимость темы. Главным и первичным источником аминокислот для человека являются белки пищи. Для обеспечения необходимых потребностей организма в аминокислотах важное значение имеет не только состояние желудочно-кишечного тракта и количество белков в пище, но и качественные характеристики пищевых белков. Чем ближе аминокислотный состав пищевого белка к аминокислотному составу белков организма, тем выше степень его усвоения в пищеварительном тракте. Кроме того, источниками аминокислот могут служить тканевые белки организма, которые постоянно метаболизируют с освобождением входящих в их состав мономеров.

Цель занятия. После изучения данной темы студент должен знать условия, необходимые для эффективного переваривания белков и всасывания аминокислот в желудочно-кишечном тракте, факторы, способствующие гниению аминокислот в кишечнике и механизмы обезвреживания продуктов гниения и их биологическую роль, уметь применять полученные знания для решения теоретических и практических задач.

Исходный уровень знаний

  1. Строение аминокислот (аланин, аспартат, глутамат, гистидин, тирозин, триптофан, цистеин).
  2. Коферментные функции витаминов (пиридоксин, никотинамид).
  3. Гидрофильные и гидрофобные свойства органических соединений.
  4. Свойства ферментов, обусловленные их химической природой.
  5. Механизмы регуляции активности каталитических белков.
  6. Окислительно-восстановительные реакции, реакции переноса и отщепления функциональных групп в биологических системах.

Аминокислотный фонд организма.

1.1.1. В организме человека содержится около 100 г свободных аминокислот, которые образуют его аминокислотный фонд. Этот фонд постоянно пополняется за счёт поступления новых молекул аминокислот взамен тех, которые были использованы в метаболических процессах. Источники и пути использования свободных аминокислот в организме представлены на рисунке 1.1.

Рисунок 1.1. Образование и использование свободных аминокислот в организме.

1.1.2. Исследования с помощью радиоактивных меток показывают, что у здорового взрослого человека общая скорость синтеза белка в организме составляет около 400 – 500 г в сутки, причём на 3/4 этот синтез обеспечивается за счёт эндогенных ресурсов. Этим объясняется тот факт, что даже при голодании синтез определённых белков происходит с достаточно высокой скоростью.

Азотистый баланс.

1.2.1. Для правильной оценки соотношения процессов биосинтеза и расщепления белков в организме достаточно точным параметром является азотистый баланс. Азотистый баланс – разница между количеством азота, поступившим в организм с пищей, и количеством азота, выведенного из организма с мочой, калом, слюной и потом.

1.2.2. Если количество поступившего азота превышает количество выделившегося азота, то наблюдается положительный азотистый баланс . Он характерен для всех состояний, при которых скорость синтеза белка в организме выше, чем скорость его распада, например:

  • у женщин в период беременности;
  • в детском возрасте при полноценном питании;
  • у больных в период выздоровления;
  • у спортсменов в период тренировок;
  • при введении анаболических гормонов.

1.2.3. Если количество азота, выведенного из организма, превышает количество азота, поступившее с пищей, то наблюдается отрицательный азотистый баланс . Он встречается во всех случаях, когда распад белков в организме преобладает над их синтезом, например.

Фонд АК организма пополняется за счет процессов:

1) гидролиза белков пищи,

2) гидролиза тканевых белков (под действием катепсинов лизосом).

Расходуется АК-фонд на процессы:

 синтез заменимых АК,

 синтез собственных белков,

 синтез азотсодержащих веществ (урины, пиримидины, холин, креатин и т.д.),

 синтез углеводов (глюконеогенез),

 синтез липидов из кетогенных АК,

 распад до NH 3 , NH 2 -CO-NH 2 , мочевой к-ты и др.

Условно метаболизм АК в тканях можно распределить на общие пути и индивидуальные пути обмена АК.

Общие пути обмена веществ

1. Переаминирование (открыто в 1937 г. Браунштейном и Крицмом).

Роль: синтез заменимых АК, участие в непрямом дезаминировании АК. Определение АлАТ и АсАТ в крови имеет большое диагностическое значение. Так, через 5 часов после инфаркта миокарда АсАТ увеличивается в 20-30 раз, через 48 часов – АлАТ и АсАТ снижаются до нормы, еще через 24 часа повышается АлАТ. Также АлАТ повышается при патологии печени.

2. Дезаминирование (ДА) АК:

 восстановительное ДА – под действием микрофлоры кишечника,

 гидролитическое ДА – с участием воды,

 внутримолекулярное ДА – с образованием непредельной к-ты,

 окислительное ДА – характерно для тканей организма. Оно бывает прямым и непрямым.

Прямое ДА идет с участием дезаминаз (оксидаз). NH 2 -CHR-COOH → NH=CR-COOH (иминокислота), при этом ФМН→ФМН·Н 2 , который затем восстанавливает кислород до пероксида водорода; последний расщепляется каталазой. А иминокислота гидролизуется до альфа-кетокислоты и аммиака.

Непрямое ДА (или транс-ДА) идет в два этапа: 1) переаминирование (см. выше); 2) дезаминирование ГЛУ α-КГ + NH 3 , над стрелочкой глутамат-ДГ, под стрелочкой – НАД→НАД·Н 2 .

3. Декарбоксилирование АК – процессы образования биогенных аминов, обладающих биологической активностью:

ГИС → (гистидил-ДК, ПФ) гистамин,

ТИР → (оксигеназа, +1/2О 2) ДОФА (диоксифенилаланин) → (ДК, ПФ, -СО 2)дофамин,

ТРИ → (оксигеназа, +1/2О 2) 5-окситриптофан → (ДК, ПФ, -СО 2) серотонин,

ГЛУ → гамма-аминомасляная к-та (ГАМК).

Дофамин и ГАМК – тормозные нейромедиаторы, гистамин – тканевой гормон. Серотонин является местным регулятором в функции периферических органов.

Образование конечных азотистых продуктов

В сутки распадается около 1-2% всех белков организма, что составляет в среднем 500 г. Из них 80% (400 г) идут на ресинтез организм-специфичных белков, а 20% (100 г) подвергаются непрямому дезаминированию с образованием конечных продуктов – кетокислот и аммиака (они содержат 10-16 г азота).

Временное обезвреживание аммиака

Аммиак токсичен (50 мг аммиака убивает кролика, при этом =0,4-0,7 мг/л). Поэтому в тканях аммиак обезвреживается временными путями:

1) в основном – образованием амидов дикарбоновых кислот . Напр., ГЛУ + NH 3 → ГЛН (над стрелочкой "глутаминсинтетаза", под стрелочкой – АТФ → АДФ + Фн). Аналогично АСП → АСН.

2) восстановительное аминирование кетокислот. Этот путь и дает токсичность аммиака (из-за уменьшения кол-ва кетокислот).

Такой азот (в виде конъюгатов аммиака) посупает в печень, где происходит окончательное обезвреживание аммиака – образование мочевины. Небольшое количество аминов отдают аммиак в почках, где он сразу синтезируется в мочу, где соединяется с протонами, образуя ионы аммония, которые выводятся с мочой. (В крови NH 4 + нет!)

Помимо синтеза белков аминокислоты еще используются для синтеза различных небелковых соединений, имеющих важное биологическое значение. Часть аминокислот подвергается распаду и превращается в конечные продукты: С0 2 , Н 2 0 и NН 3 Распад начинается с реакций, общих для большинства аминокислот.

К ним относятся:

а) декарбоксилирование - отщепление от аминокислот карбоксильной группы в виде углекислого газа:

Трансаминированию подвергаются все аминокислоты. В этой реакции участвует кофермент - фосфопиридоксаль, для образования которого необходим витамин В 6 - пиридоксин.

Трансаминирование - это главное превращение аминокислот в организме, так как его скорость значительно выше, чем у реакций декар-боксилирования и дезаминирования.

Трансаминирование выполняет две основные функции:

а) за счет трансаминирования одни аминокислоты могут превращаться в другие. При этом общее количество аминокислот не меняется, но изменяется соотношение между ними. С пищей в организм посту пают чужеродные белки, у которых аминокислоты находятся в иных пропорциях по сравнению с белками организма. Путем трансаминирования происходит корректировка аминокислотного состава организма.

б) является составной частью косвенного (непрямого) дезаминирования аминокислот - процесса, с которого начинается распад большинства аминокислот.

На первой стадии этого процесса аминокислоты вступают в реакцию трансаминирования с α-кетоглутаровой кислотой. Аминокислоты при этом превращаются в α-кетокислоты, а α-кетоглутаровая кислота переходит в глутаминовую кислоту (аминокислота).

На второй стадии появившаяся глутаминовая кислота подвергается дезаминированию, от нее отщепляется NН 3 и снова образуется α-кетоглутаровая кислота. Образовавшиеся α-кетокислоты далее подвергаются глубокому распаду и превращаются в конечные продукты С0 2 и Н 2 0. Для каждой из 20 кетокислоr (их образуется столько же, сколько имеется видов аминокислот) имеются свои специфические пути распада. Однако при распаде некоторых аминокислот в качестве промежуточного продукта образуется пировиноградная кислота, из которой возможен синтез глюкозы. Поэтому аминокислоты, из которых возникают такие кетокислоты, получили название глюкогенные. Другие же кетокислоты при своем распаде не образуют пирувата. Промежуточным продуктом у них является ацетилкофермент А, из которого невозможно получить глюкозу, но зато могут синтезироваться кетоновые тела. Аминокислоты, соответствующие таким кетокислотам, называются кетогенные.



Второй продукт косвенного дезаминирования аминокислот - аммиак. Для организма аммиак является высокотоксичным. Поэтому в организме имеются молекулярные механизмы его обезвреживания. По мере образования NН 3 связывается во всех тканях с глутаминовой кислотой с образованием глутамина. Это временное обезвреживание аммиака. С током крови глутамин поступает в печень, где распадается опять на глутаминовую кислоту и NНз. Образовавшаяся глутаминовая кислота с кровью снова поступает в органы для обезвреживания новых порций аммиака. Освободившийся аммиак, а также углекислый газ в печени используются для синтеза мочевины.

Синтез мочевины - циклический, многостадийный процесс, потребляющий большое количество энергии. В синтезе мочевины очень важное участие принимает аминокислота орнитин. Эта аминокислота не входит в состав белков. Образуется орнитин из другой аминокислоты - аргинина, который присутствует в белках. В связи с важной ролью орнитина синтез мочевины получил название орнитиновый цикл.

Впроцессе синтеза к орнитину присоединяются две молекулы аммиака и молекула углекислого газа, и орнитин превращается в аргинин, от которого сразу же отщепляется мочевина, и вновь образуется орнитин. Наряду с орнитином и аргинином в образовании мочевины еще участвуют аминокислоты: глутамин и аспарагиновая кислота. Глутамин является поставщиком аммиака, а аспарагиновая кислота его переносчиком.

Синтез мочевины - это окончательное обезвреживание аммиака. Из печени с кровью мочевина поступает в почки и выделяется с мочой. В сутки образуется 20-35 г мочевины. Выделение мочевины с мочой характеризует скорость распада белков в организме.

Раздел 3. Биохимия мышечной ткани

Лекция 5. Биохимия мышц

Основным источником аминокислот в организме являются белки пищи. В организме взрослого человека метаболизм азота в целом сбалансирован, т. е. количества поступающего и выделяемого белкового азота примерно равны. Если выделяется только часть вновь поступающего азота, баланс положителен. Это наблюдается, например, при росте организма. Отрицательный баланс встречается редко, главным образом как следствие заболеваний.

ПУТИ И ЭНЕРГЕТИКА МЕТАБОЛИЗМА АМИНОКИСЛОТ В ТКАНЯХ ЖИВОТНЫХ

Метаболизм аминокислот включен в общую схему метаболизма организма (рис. 15.1). Переваривание пищевых белков осуществляется под действием протеолитических ферментов (пептид- гидролазы, пептидазы, протеазы) и начинается в желудке, а завершается в тонком кишечнике (табл. 15.1).

Некоторые протеолитические ферменты пищеварительного тракта

Таблица 15.1

Окончание табл. 15.1

Рис. 15.1.

Свободные аминокислоты всасываются, поступают в воротную вену и доставляются кровотоком в печень, в клетках которой включаются в различные пути метаболизма, главным из которых является синтез собственных белков. Катаболизм аминокислот в основном происходит в печени.

Какой-либо специальной формы хранения аминокислот в организме не существует, поэтому резервными для аминокислот веществами служат все функциональные белки, но основными являются белки мышц (их больше всего), однако при их интенсивном использовании, например при глюконеогенезе в печени, наблюдается мышечная атрофия.

Из 20 аминокислот, входящих в состав белков, половину человек получает только из пищевых продуктов. Их называют незаменимыми , так как организм их не синтезирует или их синтез включает особенно много стадий и требует большого числа специализированных ферментов, кодируемых многими генами. Иными словами, их синтез чрезвычайно «дорог» для организма. Абсолютно незаменимыми для человека являются лизин , фенилаланин и триптофан.

Ниже представлена классификация аминокислот по способности организма к их синтезу.

Результатом недополучения в пищевом рационе хотя бы одной незаменимой аминокислоты является патологическое состояние, называемое квашиоркором. Его проявлениями являются истощение, апатия, недостаточный рост, а также снижение сывороточных белков в крови. Последнее приводит к снижению онкотического давления крови, что является причиной отеков. От квашиоркора особенно страдают дети, так как растущему организму необходимо синтезировать много белков.

Однако даже при длительном употреблении пищи, богатой полноценными белками, организм не может отложить про запас незаменимые аминокислоты. Избыток аминокислот (не использованных в синтезе белка и на другие специфические нужды) расщепляется для производства энергии или создания энергетических запасов (жиров и гликогена).

Основные направления метаболических путей, по которым происходит поступление аминокислот в организм и дальнейшие их превращения в организме, приведены на рис. 15.2.

Рис. 15.2.

Одной из важнейших в метаболизме аминокислот является глутаминовая кислота (глутамат), дезаминирование которой катализируется глутаматдегидрогеназой. Глутамат выступает восстановителем либо NAD + , либо NADP + , причем при физиологических значениях pH группа NH 3 протонирована и находится в ионизированной форме (NH/):


Глутаматдегидрогеназа - ключевой фермент дезаминирования, участвующий в окислении многих аминокислот. Она аллосте- рически ингибируется АТР и GTP (их можно назвать индикаторами высокого уровня энергии: запасов много - «топлива» не нужно) и активируется ADP и GDP (увеличение их содержания говорит о том, что запасы «топлива» иссякают).

а-Кетогпутарат участвует в цикле лимонной кислоты, что делает возможным, с одной стороны, окисление глутаминовой кислоты (уже после дезаминирования) до Н 2 0 и С0 2 , а с другой стороны, а-кетоглутарат может превращаться в оксалоацетат, что свидетельствует об участии глутаминовой кислоты в синтезе глюкозы. Аминокислоты, которые могут участвовать в синтезе глюкозы, называются глюкогенными.

Для других аминокислот (кетогенных) не имеется соответствующих ферментов - дегидрогеназ. Дезаминирование большинства из них основано на переносе аминогруппы с аминокислоты на а-кетоглутарат, в результате которого образуется соответствующая кетокислота и глутамат, который далее дезаминируется глу- таматдегидрогеназой, т.е. процесс протекает в две стадии.

Первая стадия называется трансаминированием , вторая - дезаминированием. Стадия трансаминирования может быть представлена следующим образом:


Суммарную реакцию можно представить как

По меньшей мере, у 11 аминокислот (аланина, аргинина, аспаргина, тирозина, лизина, аспаргиновой кислоты, цистеина, лейцина, фенилаланина, триптофана и валина) в результате ферментативной реакции трансаминирования отщепляется а-аминогруппа аминокислоты, которая переносится на а-углеродный атом одной из трех а-кетокислот (пировиноградной, щавелевоуксусной или а- кетоглутаровой).

Например, для аланина дезаминирование протекает по схеме


Известны две наиболее важные трансаминазы - аланинтран- саминаза и глутаматтрансаминаза. Реакции, катализируемые трансаминазами, легко обратимы, и их константы равновесия близки к единице.

В активных центрах всех трансаминаз имеется кофермент пиридоксаль-5 "-фосфат (ПФ ), участвующий во многих фермента- тив-ных превращениях аминокис- лотяы в качестве электрофильного интермедиата:

Активной группой пиридоксаль-5"-фосфата служит альдегидная группа -СНО. Функция кофермента в составе фермента (Е- ПФ) заключается в том, чтобы сначала принять аминогруппу от аминокислоты (акцептирование), а затем передать ее кетокислоте (донорство) (реакция трансдезаминирования):

а-Кетоглутарат и глутамат широко участвуют в метаболическом потоке азота, который отражает глутаматный путь трансформации аминокислот.

Рассмотренный путь трансдезаминирования является наиболее общим для аминокислот, однако некоторые из них отдают свою аминогруппу иначе (реакция дезаминирования).

Серин дезаминируется в реакции дегидратации, катализируемой специфической дегидрогеназой.

Цистеин (содержит тиольную группу вместо гидроксильной у серина) дезаминируется после отщепления H 2 S (процесс идет в бактериях). В обеих реакциях продуктом является пируват:

Гистидин дезаминируется с образованием уроканиновой кислоты, которая в серии последующих реакций превращается в аммиак, С |-фрагмент, присоединенный к тетрагидрофолиевой кислоте, и глутаминовую кислоту.

Физиологически важный путь превращений гистидина связан с его декарбоксилированием и образованием гистамина:

Дезаминирование гистидина катализируется гистидазой, содержащейся в печени и в коже; уроканиновая кислота превращается в имидазолонпропионовую кислоту при действии уроканиназы, которая содержится только в печени. Оба эти фермента появляются в крови при заболеваниях печени, и измерение их активности используется для диагностики.

Аминокислоты - основная составляющая всех белков. Одна из основных функций белков - рост и восстановление мышечных тканей (анаболизм).

Аминокислоты - основная составляющая всех белков. Одна из основных функций белков - рост и восстановление мышечных тканей (анаболизм).

Чтобы разобраться во всех тонкостях метаболизма, необходимо изучить молекулярную структуру белков.

Структура белков и аминокислот

Белок состоит из углерода, водорода, кислорода и азота. Также он может содержать серу, железо, кобальт и фосфор. Данные элементы формируют строительные блоки белка - аминокислоты. Молекула белка состоит из длинных цепей аминокислот, соединенных между собой амидными или пептидными связями.

Белковая пища содержит в себе аминокислоты, разновидность которых зависит от типа присутствующего белка. Существует бесконечное количество комбинаций разных аминокислот, каждая из которых характеризует свойства белка.

Если различные комбинации аминокислот определяют свойства белка, то структура отдельных аминокислот влияет на его функцию в организме. Аминокислота состоит из центрального атома углерода, который находится в центре, положительно заряженной аминовой группы NH 2 на одном конце и отрицательно заряженной карбоксильной кислотной группы СООН на другом. Другая группа R, называющаяся боковой цепочкой, определяет функцию аминокислоты.

Нашему организму требуется 20 различных аминокислот, которые, в свою очередь, могут быть разделены на отдельные группы. Главным признаком разделения являются их физические свойства.

Группы, на которые делятся аминокислоты, могут быть следующими.

1. Существенные (ЕАА). Также их называют незаменимыми, поскольку организм не в состоянии вырабатывать их самостоятельно. Вы можете получить данные аминокислоты из пищи.

К данной группе относятся такие аминокислоты, как

  • гистидин,
  • лизин,
  • фенилаланин,
  • метионин,
  • лейцин,
  • изолейцин,
  • валин,
  • треонин.
2. Несущественные (NEAA) или заменимые. Аминокислоты этой группы вырабатываются вашим организмом. Для полноценного обмена веществ они важны не менее, чем существенные.

Несущественные аминокислоты:

  • цистеин,
  • цистин,
  • глицин,
  • пролин,
  • серин,
  • триптофан,
  • тирозин.

Белок, содержащий все незаменимые аминокислоты, называют полноценным. А неполноценный белок, соответственно, либо не содержит в себе всех незаменимых аминокислот, либо содержит, но в незначительных количествах.

Однако, если несколько неполноценных белков объединить, то можно собрать все незаменимые аминокислоты, из которых состоит белок полноценный.

Процесс пищеварения

В процессе пищеварения клетки слизистой оболочки желудка вырабатывают пепсин, поджелудочная железа - трипсин, а тонкая кишка - химотрипсин. Выделение этих ферментов запускает реакцию расщепления белка до пептидов.

Пептиды, в свою очередь, расщепляются на свободные аминокислоты. Этому способствуют такие ферменты, как аминопептидазы и карбоксипептидазы.

Далее свободные аминокислоты транспортируются через кишечник. Кишечные ворсинки покрыты однослойным эпителием, под которым расположены кровеносные сосуды. Аминокислоты попадают в них и разносятся по организму кровью к клеткам. После этого запускается процесс усвоения аминокислот.

Дезанимирование

Представляет собой удаление аминогрупп от молекулы. Данный процесс происходит в основном в печени, хотя глутамат дезанимируется также и в почках. Аминогруппа, удаляющаяся от аминокислот во время дезанимирования, превращается в аммиак. При этом атомы углерода и водорода могут потом быть использованы в реакциях анаболизма и катаболизма.

Аммиак вреден для человеческого организма, поэтому он превращается в мочевину или мочевую кислоты под воздействием ферментов.

Трансанимирование

Трансанимирование - это реакция передачи аминогруппы от аминокислоты на кетокислоту без образования аммиака. Перенос осуществляется за счет воздействия трансаминазы - ферментов из группы трансфераз.

Большинство подобных реакций включает передачу аминогрупп на альфа-кетоглутарат, формируя новую альфа-кетоглутаровую кислоту и глутамат. Важной реакцией трансаминазы являются аминокислоты с разветвленными цепочками (), усвоение которых происходит непосредственно в мышцах.

В данном случае BCAA удаляются и переносятся на альфа-кетоглутарат, образующий разветвленные кетокислоты и глутаминовую кислоту.

Обычно, в трансанимировании задействованы аминокислоты, которые больше всех содержатся в тканях - аланин, глутамат, аспарат.

Белковый обмен

Аминокислоты, которые поступили к клеткам, используются для синтеза белка. Каждая клетка вашего организма нуждается в постоянном обмене белка.

Обмен белка состоит из двух процессов:

  • синтез белка (анаболический процесс);
  • распад белка (катаболический процесс).

Если представить эту реакцию в виде формулы, она будет выглядеть следующим образом.

Обмен белка = Синтез белка - Распад белка

Наибольшее количество белка, содержащегося в организме, находится в мышцах.

Поэтому логично, что если ваш организм в процессе белкового обмена будет получать больше белка, чем терять, то будет наблюдаться прирост в мышечной массе. Если же в процессе белкового обмена распад белка будет превосходить синтез, то масса неизбежно будет уменьшаться.

Если организм не будет получать достаточное количество белка, необходимое для жизнедеятельности, тогда он умрет от истощения. Но смерть, разумеется, наступает лишь в особо крайних случаях.

Для того чтобы полностью удовлетворять требованиям организма, вы должны снабжать его новыми порциями аминокислот. Для этого употребляйте достаточное количество белковой пищи, являющейся главным источником белка для вашего организма.

Если вашей целью является набор мышечной массы, вы должны следить за тем, чтобы разность показателей, указанных в формуле выше, была положительной. Иначе достичь прироста мышечной массы не получится.

Азотистый баланс

Представляет собой соотношение количества азота, которое поступает в организм с пищей и выделяется. Выглядит этот процесс следующим образом.

Баланс азота = Общее потребление - Естественные отправления организма - Пот

Азотистый баланс достигается в том случае, если данное уравнение равно 0. Если результат больше 0, то баланс положительный, если меньше - отрицательный.

Основной источник азота в организме - белок. Следовательно, по азотистому балансу можно судить и о белковом обмене.

В отличие от жира или гликогена белок в теле не сохраняется. Поэтому при отрицательном балансе азота организму приходится разрушать мышечные образования. Это необходимо для обеспечения жизнедеятельности.

Норма потребляемого белка

Недостаток белка в организме может привести к серьезным проблемам со здоровьем.

Суточная норма потребляемого белка

Образ жизни человека

Норма потребляемого белка

Среднестатистический человек, ведущий малоподвижный образ жизни и не занимающийся спортом

(мужчина или женщина)

1,0 - 1,4 г/кг веса тела

Человек, выполняющий неинтенсивные физические упражнения на регулярной основе

(мужчина или женщина)

1,6 - 2,0 г/кг веса тела

Женщина, желающая нарастить мышечную массу/подсушиться и повысить выносливость, которая регулярно выполняет тяжелые физические упражнения

2,0 - 2,4 г/кг веса тела

Мужчина, желающий нарастить мышечную массу/подсушиться и повысить выносливость, который регулярно выполняет тяжелые физические упражнения

2,0 - 3,0 г/кг веса тела

Заключение

Рост мышц напрямую зависит от количества белка, который поступает в ваш организм и синтезируется в нем. Вам необходимо следить за нормой потребляемого белка. Определитесь со своими целями, которых вы хотите достичь с помощью режима тренировок и питания. Наметив цель, вы сможете рассчитать суточную норму белка, необходимого для жизнедеятельности организма.

Лучшие статьи по теме