Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Полы
  • Электролиз. Получение железа высокой чистоты Теоретические сведения по проблеме

Электролиз. Получение железа высокой чистоты Теоретические сведения по проблеме

Вариант 1

1.Напишите уравнения реакций: а) получения цинка из оксида цинка путем восстановления углём; б) получения кобальта из оксида кобальта (II) путем восстановления водородом; в) получения титана из хлорида титана (IV) магний термическим способом. Реакцию в разберите как окислительно-восстановительную: обозначьте степени окисления атомов и расставьте коэффициенты, определив их методом электронного баланса.

2.Составьте схемы и уравнения реакций, протекающих при электролизе: а) расплава хлорида калия; б) раствора бромида цинка; в) раствора сульфата железа (II).

3.В чем заключается сущность коррозии металлов? Какие виды коррозии вам известны?
Коррозия – это самопроизвольное разрушение металлов и сплавов в результате химического, электрохимического или физико-химического взаимодействия с окружающей средой.

4.На стальной крышке поставлена медная заклёпка. Что раньше разрушится – крышка или заклёпка? Почему?
Стальная крышка, поскольку она включает в себя железо, а железо более активный металл, чем медь и будет скорее коррозировать. Также железо с медью образуют гальваническую пару, где железо – анод, и разрушается скорее, в медь – катод, остается нетронутым.

Вариант 2

1.Напишите уравнения реакций: а) получения железа из оксида железа (III) алюминотермическим способом; б) получения меди из оксида меди (II) путём восстановления углём; в) получения вольфрама из его высшего оксида путем восстановления водородом. Реакцию в разберите как окислительно-восстановительную: обозначьте степени окисления атомов и расставьте коэффициенты, определив их методом электронного баланса.

2.Составьте схемы и уравнения реакций, протекающих при электролизе: а) раствора бромида меди (II); б) раствора иодида натрия; в) раствора нитрата свинца (II).

3.Какие факторы приводят к усилению коррозии металлов?

4.Почему лужённый (покрытый оловом) железный бак на месте повреждения защитного слоя быстро разрушается?
Также железо с оловом образуют гальванический элемент, где железо – анод, и разрушается скорее, а олово – катод, остается нетронутым.

Вариант 3

1.Напишите уравнения реакций: а)получения меди из оксида меди (II) путём восстановления водородом; б) получения железа из оксида железа (III) путем восстановления оксидом углерода (II); в) получения ванадия из оксида ванадия (V) кальцийтермическим способом. Реакцию в разберите как окислительно-восстановительную: обозначьте степени окисления атомов и расставьте коэффициенты, определив их методом электронного баланса.

2.Составьте схемы и уравнения реакций, протекающих при электролизе: а) расплава хлорида кальция; б) раствора бромида калия; в) раствора сульфата цинка.

3.Какие факторы способствуют замедлению коррозии металлов?
-Нейтрализация или обескислороживание коррозионных сред, а также применение различного рода ингибиторов коррозии;
-Устранения из металла или сплава примесей, ускоряющих коррозионный процесс (устранение железа из магниевых или алюминиевых сплавов, серы из железных сплавов).
-Исключение неблагоприятных металлических контактов или их изоляция, устранение щелей и зазоров в конструкции, устранение зон застоя влаги.

4. Какие металлы при взаимном контакте в присутствии электролита быстрее разрушаются: а) медь и цинк; б) алюминий и железо? Почему?
Быстрее разрушаться будет более активный металл из данной пары
а) цинк более активный металл, чем медь;
б) алюминий более активный металл, чем железо.

Вариант 4

1.Напишите уравнения реакций: а)получения молибдена из его высшего оксида путем восстановления водородом; б)получения хрома из оксида хрома (III) алюминотермическим способом; в) получения никеля из оксида никеля (II) путем восстановления углем. Реакцию в разберите как окислительно-восстановительную: обозначьте степени окисления атомов и расставьте коэффициенты, определив их методом электронного баланса.

2.Составьте схемы и уравнения реакций, протекающих при электролизе: а)раствора хлорида меди (II); б) раствора иодида натрия; в) раствора нитрата никеля (II).

3.Перечислите способы борьбы с коррозией металлов.

4.Почему на оцинкованном баке на месте царапины цинк разрушается, а железо не ржавеет?
Цинк более активный металл, чем железо. Также железо с цинком образуют гальванический элемент, где цинк – анод, и разрушается скорее, а железо – катод, остается нетронутым.

Союз Советскиз

Социалистическиз

Республик

Зависимое от авт. свидетельства ¹

Заявлено 11Л1!.1964 (№ 886625/22-2) Кл. 40с, Зоо с присоединением заявки №.МПК С 22d

УДК 669.174: 669.177.035.

45 (088.8) Государственный комитет по делам изобретений и открытий СССР

Заявитель Центральный научно-исследовательский институт черной металлургии имени И. П. Бардина

СПОСОБ ПОЛУ!ЕНИЯ ЖЕЛЕЗА ЭЛЕКТРОЛИЗОМ

РАСПЛАВЛЕННЪ|Х СОЛЕЙ С РАСТВОРИМЪ!МИ АНОДАМИ

Предмет изобретения

Подписная группа ¹ 1бО

Известны способы получения железа и других металлов в водных растворах и в расплавленных солях, Предложенный способ получения железа электролизом расплавленных солей с растворимыми анодами из чугуна или продуктов внедоменного восстановления железорудного материала отличается от известных тем, что для получения железа повышенной чистоты электролиз проводят в расплавленном хлористом натрии с добавкой хлорида железа в количестве не более 10 ", по весу, в расчете на железо, при 850 — 900 С и анодной и катодной плотности тока соответственно до 0,4 и 10 а/см- .

По предлагаемому спосооу исходные железосодержащие материалы в виде кусков, брикетов, гранул, стружки или пластин загружают в электролизную вынну, например с керамической футеровкой, и подвергают электрическому рафинированию при 850 — 900 С в атмосфере азота или другого инертного газа.

Порошкообразное чистое железо, осаждающееся на катоде, периодически выгружают из ванны и измельчают для отделения воздушной сепарацией части электролита, возвращаемого в ванну. Остаточный электролит отделяют от железа вакуумной сепарацией при 900 — 950 С или гидрометаллургической обработкой.

Преимуществом предлагаемого способа является повышенная чистота железа с содержанием основного элемента до 99,995%. и

Способ получения железа электролизом расплавленных солей с растворимыми анода15 ми из чугуна или продуктов внедоменного восстановления железорудного материала, отличающийся тем, что, с целью получения железа повышенной чистоты, электролиз проводят в расплавленном хлористом натрии с

20 добавкой хлорида железа в количестве не более 10% по весу, в расчете на железо, при

850 †9 С и анодной и катодной плотности тока соответственно до 0,4 и 10 а/сл -.

Похожие патенты:

Изобретение относится к области электрохимического получения порошков металлов платиновой группы и может применяться для катализа в химической промышленности, электрохимической энергетике, микроэлектронике


Промышленные сорта технически чистого железа (типа Армко), получаемые пирометаллургическим способом, имеют степень чистоты 99,75-99,85%. Дальнейшее удаление содержащихся в этом железе главным образом неметаллических примесей (С, О, S, Р, N) возможно специальной переплавкой в высоком вакууме или отжигом в атмосфере сухого водорода. Однако даже после подобной обработки содержание примесей достигает 2000-1500 частей на миллион частей железа, причем основными примесями являются С, Р, S, Mn и О.
Железо более высокой степени чистоты получают электролитическим и химическим методами, но и оно требует дополнительной сложной очистки.
Электролитическими способами железо получают из умеренно концентрированных или концентрированных растворов хлорида или сульфата железа соответственно при малых плотностях тока и комнатных температурах или высоких плотностях и температурах порядка 100°.
По одному из способов железо осаждали из раствора следующего состава, г/л: 45-60 Fe2+ (в виде FeCl2), 5-10 BaCl2 и 15 NaHCOs. В качестве анодов использовали пластины из армко-железа или уральского кровельного железа, в качестве катодов - чистый алюминий. Электролиз вели при комнатной температуре и плотности тока 0,1 а/дм2. Получали осадок с крупнокристаллической структурой, содержащий около 0,01 % С, следы фосфора и не содержащий серы.
Чистота электролитического железа зависит от чистоты электролита и чистоты металла анодов. При осаждении могут быть удалены примеси более благородные, чем железо, например олово, цинк, медь. He поддаются удалению никель, кобальт, марганец. Общее содержание примесей в электролитическом железе примерно такое же, как и в технически чистом железе. В нем обычно содержится значительное количество кислорода (до 0,1-0 2%), а также серы (0,015-0,05%), если осаждение производилось из сульфатных ванн.
Удаление кислорода из электролитического железа осуществляется восстановительными процессами: обработкой жидкого или твердого металла водородом или раскислением в вакууме расплава углеродом. Отжигом в токе сухого водорода при 900-1400° удается снизить содержание кислорода до 0,003%.
Для получения железа высокой чистоты в полупромышленных масштабах используется способ восстановления водородом в вакуумной плавильной установке. Электролитическое железо сначала подвергается десульфурации присадкой марганца в тигле из извести и плавикового шпата в атмосфере окиси углерода (содержание серы снизилось с 0,01 до 0,004%), затем расплав восстанавливается водородом путем обдувки или продувки в тигле из окиси алюминия. При этом удавалось снизить содержание кислорода до 0,004-0,001%. Десульфурацию металла можно также проводить в высоком вакууме, используя добавки в расплав таких металлов (олово, сурьма, висмут), которые образуют летучие сульфиды. Путем раскисления расплава углеродом в высоко-вакуумных печах удается получить железо с содержанием кислорода и углерода до 0,002% каждого.
Получение железа с более низким содержанием кислорода раскислением в высоком вакууме затруднено взаимодействием металла с материалом тигля, которое сопровождается переходом кислорода в металл. Наилучшим материалом тиглей, обеспечивающим минимальный переход кислорода, являются ZrO2 и ThO2.
Высокочистое железо получают также карбонильным методом из пентакарбонила Fe(CO)5 разложением его при 200-300°. Карбонильное железо не содержит обычно сопутствующих железу примесей - серы, фосфора, меди, марганца, никеля, кобальта, хрома, молибдена, цинка, кремния. Специфическими примесями в нем являются углерод и кислород. Наличие кислорода обусловлено вторичными реакциями между образующейся двуокисью углерода и железом. Содержание углерода достигает 1%; его можно снизить до 0,03%, если к парам карбонила железа добавлять небольшое количество аммиака или обрабатывать порошок железа в водороде. Удаление углерода и кислорода достигается теми же способами вакуумной плавки, которые используются и для электролитического железа.
Наиболее чистое железо может быть получено химическим способом, однако этот способ весьма сложен и дает возможность получить металл в небольших количествах. В химических способах для очистки солей железа от примесей Co, Ni, Cu, Cr, Mn применяют рекристаллизацию, реакции осаждения или извлечения примесей осаждением.
Один из химических методов, позволяющий получить железо весьма высокой степени чистоты (менее 30-60 частей примесей на миллион), включает следующие последовательные стадии:
1) извлечение комплекса FeCl3 эфиром из раствора 6-н HCl с регенерацией водного раствора и последующим извлечением эфира;
2) восстановление FeCls до FeCl2 железом высокой чистоты;
3) дополнительная очистка FeCl2 от меди обработкой сернистым реактивом, а затем эфиром;
4) электролитическое осаждение металла из раствора FeCl2;
5) отжиг зерен металла в водороде (для удаления кислорода и углерода);
6) получение компактного железа методом порошковой металлургии (прессование в прутки и спекание в водороде)
Последняя стадия может быть осуществлена путем бестигельной зонной плавки, которая устраняет недостаток вакуумной обработки - переход кислорода из тигля в металл.

14.06.2019

Гибочный станок для арматуры от Авангард. Принцип работы, особенности конструкции и обзорные данные приспособлений, агрегатов, аппаратов и прочего оборудования для гибки...

14.06.2019

При замене мойки на кухонном пространстве, во время монтажа смесителя, ванны, окон и дверей предусматривается использование герметиков. Это особые композитные вещества,...

13.06.2019

Основным предназначением покрасочной камеры называют высококачественное и равномерное окрашивание транспортного средства. Конечно же, такой метод нельзя назвать...

13.06.2019

Алмалыкское горное металлургическое предприятие приступило к воплощению в жизнь второй стадии программы, направленной на возведение объектов железнодорожной...

13.06.2019

Токарные работы являются одним из типов обработки изделий, в ходе которых стандартная заготовка из металла превращается в нужные конструкционный элемент. Для выполнения...

13.06.2019

С годами в этом мире заметна тенденция к наращиванию производства металлических конструкций. Значительный спрос на подобные сооружения связан с их выгодой в...

12.06.2019

Корпорация из Бразилии Vale сделала заявление по поводу того, что она планирует выделить один миллиард девятьсот миллионов американских долларов на удаление и увеличение...

12.06.2019

Терраса или как её любят называть в народе, веранда, является важнейшим атрибутом любого загородного дома сегодня. Мало кто будет спорить с тем, что она обладает большим...

12.06.2019

В настоящий момент нержавеющий металлический прокат готов предложить потребителям большое количество продукции вроде нержавеющей арматуры, уголков, шестигранников,...

Создание железа (читай — чугуна и стали) электролизом, а не обычным плавлением могло бы предотвратить эмиссию миллиарда тонн углекислого газа в атмосферу каждый год. Так говорит Дональд Сэдовей (Donald Sadoway) из Массачусетского технологического института (MIT), который разработал и опробовал «зелёный» способ производства железа электролизом его оксидов.

Если процесс, продемонстрированный в условиях лаборатории, будет масштабирован, он смог бы устранить потребность в обычной выплавке, которая выпускает в атмосферу почти тонну углекислого газа на каждую тонну произведённой стали.

При обычной технологии железную руду соединяют с коксом. Кокс реагирует с железом, производя CO 2 и угарный газ, и оставляя сплав железа с углеродом — чугун, который потом можно переплавить в сталь.

В методе Сэдовея железную руду смешивают с растворителем — диоксидом кремния и негашёной известью — при температуре 1600 градусов по Цельсию — и пропускают через эту смесь электрический ток.

Отрицательно заряженные ионы кислорода мигрируют к положительно заряженному аноду, откуда кислород уходит прочь. Положительно заряженные ионы железа мигрируют к отрицательно заряженному катоду, где они восстанавливаются до железа, которое собирается у основания ячейки и откачивается.

Подобный процесс используется в производстве алюминия (и требует приличного расхода электроэнергии), оксид которого настолько устойчив, что не может быть фактически восстановлен при помощи углерода в доменной печи, в которой, к примеру, производят чугун. И понятно, что сталелитейная промышленность никогда не имела никакой причины переходить на электролиз железной руды, так как она легко восстанавливается углеродом.

Но если правительства разных стран начнут налагать большие налоги на эмиссию парниковых газов — углекислого, в частности, то новый метод производства чугуна мог бы стать более привлекательным. Правда, от лабораторных установок такого рода до установок промышленных, как оценивают учёные, пройдёт 10-15 лет.

Автор работы говорит, что самое большое препятствие — найти практичный материал для анода. В экспериментах он использовал анод, сделанный из графита. Но, к сожалению, углерод реагирует с кислородом, выбрасывая столь же большое количество углекислого газа в воздух, как при обычной выплавки чугуна.

Идеальные платиновые аноды, к примеру, слишком дороги для крупномасштабного производства. Но выход, возможно, есть — в подборе неких стойких металлических сплавов, которые формируют оксидную плёнку на своей внешней поверхности, но всё ещё проводят электричество. Также можно использовать проводящую керамику.

Другая проблема состоит в том, что новый процесс использует много электричества – приблизительно 2 тысячи киловатт-часов на тонну полученного железа. Так что экономический и даже экологический смысл в новом способе производства чугуна появится лишь при условии, что электроэнергия эта будет выработана каким-либо экологическим, и при этом дешёвым, способом, без эмиссии углекислого газа. Это признаёт и сам автор метода.

При прохождении электрического тока через металлы (про­водники 1-го рода) химические реакции не происходят, и металлы остаются неизменными. Если же электрический ток проходит через расплав или раствор электролита (проводники 2-го рода), на границе электролит - металлический проводник (электрод) происходят различные химические реакции (электролиз) и обра­зуются новые соединения.

Электролизом называется совокупность процессов, происходящих при прохождении электрического тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

При электролизе катионы перемещаются к отрицательному электроду (катоду), а анионы - к положительному электроду (аноду). При этом, однако, не всегда катионы и анионы электро­лита разряжаются, принимая или отдавая электроны. Часто в ре­акциях электролиза принимает участие растворитель-электролит, например, вода.

Принципиальное различие между реакциями в гальваниче­ском элементе и электролизере заключается только в их направ­лении и самопроизвольности. В замкнутой цепи гальванического элемента электрохимическая реакция протекает самопроизволь­но, а в электролизере - только под воздействием электрического тока внешнего источника.

Следует обратить внимание на название электродов: в гальваническом элементе отрицательный электрод - анод, а положительный - катод; в электролизере, наоборот, отрицательный электрод - катод, а положительный - анод.

При этом следует помнить, что термины «отрицательный» и «положительный» всегда относятся к полюсам источника тока, именно так они и обозначают электроды электролизера. Общее в этих процессах состоит в том, что как в гальваническом элемен­те, так и в электролизере на отрицательном электроде создается избыток электронов, а на положительном - их недостаток. На катоде ионы или молекулы восстанавливаются под действием электронов, на аноде частицы окисляются, отдавая свои электро­ны электроду.

В электролизере катионы (М n +) перемещаются к катоду (–), а анионы (А n –) - к аноду (+).

Напряжением разложения электролита при электролизе назы­вается минимальное напряжение (внешняя ЭДС), которое нужно приложить к электродам. Например, для раствора хлорида цинка при стандартных условиях:

Zn 2+ + 2ē = Zn φ° = – 0,76 B,

Cl 2 + 2ē = 2Cl – φ° = + 1,36 В,

и напряжение разложения равно (по абсолютной величине) сумме стандартных электродных потенциалов обоих электродов: 0,76 + 1,36 = 2,12 В, т.е. напряжение разложения не может быть ниже ЭДС соответствующего гальвани­ческого элемента.

Напряжение разложения составляется из потенциалов двух электродов - потенциалов разряжения ионов.

Потенциал разряжения катиона иногда называют потенциа­лом осаждения металла. Это тот минимальный потенциал, кото­рый должен быть приложен к электроду для того, чтобы катион потерял заряд и произошло осаждение металла. Для некоторых ионов (Cu 2+ , Ag + , Cd 2+) потенциал осаждения близок к электродному потенциалу, для других же ионов (Fe 2 + , Co 2 + , Ni 2 +) потенциалы осаждения значительно превышают электро­дные потенциалы металлов - для электролиза необходимо опре­деленное перенапряжение.

Различают электролиз растворов и электролиз расплавов . Электролиз растворов подразделяют на электролиз с инертными электродами и электролиз с растворимым анодом . Инертными могут быть металлические (Pt, Au) и неметаллические (графит) электроды. В качестве растворимых используют аноды из Cr, Ni, Cd, Zn, Ag, Cu и др.

Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например Ni и Fe в щелочном растворе, Pb в H 2 SO 4 .

Электролиз растворов с инертными электродами. При электролизе водных растворов электролитов часто вмес­то металла на катоде выделяется не металл, а водород. В кисло­тных средах водород образуется по реакции:

2H + + 2ē = H 2 .

В нейтральных и щелочных средах водород образуется по реак­ции с участием молекул воды:

2H 2 O + 2ē = H 2 + OH – .

Такие катионы, как Na + или К + , в водном растворе вообще не разряжаются, а выделяется водород.

Катионы могут быть сгруппированы по способности разря­жаться в ряд от неразряжающихся до легко разряжающихся. При этом изменяются и продукты электролиза. Для некоторых катионов возможно одновременное образова­ние металла и водорода.

Ниже даны катионы в порядке понижения трудности их раз­ряжения и продукты электролиза:

Катионы Продукты электролиза

Li + , K + , Na + , Mg 2+ , Al 3+ , H + (перенапр.) H 2

Mn 2+ , Zn 2+ , Cr 3 + , Fe 2 + , H + (рН 7) M + H 2

Co 2+ , Ni 2+ , Sr 2+ , Рb 2+ , Н + (рН 0) M + H 2

Cu 2+ , Ag + , Au 3 + M

Различное положение водорода в этом ряду объясняется сле­дующими причинами. Положение водорода между свинцом и медью соответствует численным значениям стандартных элек­тродных потенциалов при С M n + = С H + = 1 моль/л, т.е. при рН=0. Положение водорода между железом и кобальтом соответствует электродному потенциалу водорода в воде при рН=7 (φº H 2 / H + = –0,414 В). При этих условиях из растворов мо­гут быть осаждены все металлы, значение φ° которых больше, чем –0,414 В. Однако на практике кроме кобальта, никеля, олова и свинца удается из водных растворов осадить также цинк, хром и железо. Это объясняется тем, что выделение на катоде газообразного водорода затрудняется перенапряжением водо­рода.

Таким образом, в ряду катионов от Li + до А1 3+ металл не образуется, а при электролизе выделяется водород за счет восста­новления воды. В ряду катионов от Мn 2+ до Рb 2+ при электро­лизе образуются одновременно металл и водород, и, наконец, в ряду Cu 2+ - Au 3+ образуется только металл .

Следовательно, чем левее (ближе к началу) стоит металл в ряду стандартных электродных потенциалов (ряд напряжений), тем труднее выде­лить этот металл электролизом водного раствора.

Если к раствору, содержащему несколько катионов, прило­жить постепенно возрастающее напряжение, то электролиз начи­нается тогда, когда достигается потенциал осаждения катиона с самым высоким электродным потенциалом (наиболее положи­тельным). При электролизе раствора, содержащего ионы цинка (φ°= –0,76 В) и меди (φ° = +0,34 В), на катоде вначале выделя­ется медь, и лишь после того, как почти все ионы Сu 2+ разрядят­ся, начнет выделяться цинк. Таким образом, если в растворе одновременно содержатся различные катионы, то при электроли­зе их можно выделить последовательно в соответствии со значе­ниями их электродных потенциалов . При этом предполагает­ся, что перенапряжение выделения металлов для них примерно одинаково (и невелико).

Что касается потенциалов разряжения анионов , то здесь картина намного сложнее из-за способности воды участво­вать в процессе электролиза. В общем случае можно сказать, что на аноде сначала разряжаются анионы с самым низким потенциалом (наименее положительные). Если раствор содержит ионы Сl – (φº=1,36 В), Вr – (φ° = 1,09 В) и I – (φº = 0,54 В), то сначала будет образовываться йод, затем бром и, наконец, хлор. Фторид-ионы в водном растворе вообще разряжаться не могут (φ° = 2,87 В).

Большинство кислородсодержащих анионов (кроме ацетат-иона) в водном растворе не разряжаются, вместо них в кислот­ных и нейтральных растворах происходит разложение воды:

2Н 2 О – 4ē = О 2 + 4Н + ,

а в щелочных растворах - разрядка гидроксид-ионов:

2OH – – 2 ē = 1 / 2 O 2 + H 2 O.

Анионы по их способности разряжаться при электролизе вод­ных растворов располагаются в следующем ряду от неразряжа­ющихся в водном растворе анионов кислородсодержащих кислот типа SO 4 2– , NO 3 – до легкоразряжающихся:

Анионы Продукты электролиза

SO 4 2– , NO 3 – и т. п., ОН – O 2

Сl – , Вr – , I – Cl 2 (ClO – , ClO 3 –), Br 2 , I 2 (+O 2)

S 2– S, SO 2 (+ O 2)

Таким образом, можно сформулировать следующие основные правила электролиза водных растворов электролитов с нерастворимыми электродами :

1. Из анионов электролитов в первую очередь разряжаются на аноде анионы бескислородных кислот (Cl – , Br – , S 2– и т.д.).

2. Анионы кислородсодержащих кислот (SO 4 2– , NO 3 – , CO 3 2– и т.д.) в присутствии воды не разряжаются, вместо них окисляется вода по реакции:

2H 2 O – 4ē = O 2 + 4H + .

3. Активные металлы, расположенные в ряду напряжений до Al (включительно) на катоде не восстанавливаются, вместо них восстанавливается вода:

2H 2 O + 2ē = H 2 + 2OH – .

4. Металлы, расположенные в ряду напряжений после алюминия, но до водорода, восстанавливаются на катоде наравне с молекулами воды:

К: 1) Zn 2+ + 2ē = Zn

2) 2H 2 O + 2ē = H 2 + 2OH – .

5. Металлы, имеющие положительное значение электродного потенциала восстанавливаются на катоде в первую очередь:

Cu 2+ + 2ē = Cu

Например, при электролизе серной кислоты (графитовые электроды) происходят следующие процессы:

на катоде 2Н + + 2ē = Н 2 ,

на аноде 2Н 2 О – 4ē = О 2 + Н + .

Суммарное уравнение:

2H 2 O = 2H 2 + O 2 ,

т.е. при электролизе раствора серной кислоты водород и кисло­род выделяются за счет разложения молекул воды. Продукты электролиза: водород и кислород.

Электролиз раствора сульфата меди:

на катоде Сu 2 + + 2ē = Сu,

на аноде 2Н 2 О – 4ē = O 2 + 4H +

Суммарное уравнение:

2Cu 2+ + 2H 2 O = 2Cu + O 2 + 4H +

2CuSO 4 + 2Н 2 О = 2Сu + О 2 + 2H 2 SO 4 .

Продукты электролиза: медь, кислород, серная кислота.

Возможность разряжения аниона зависит от его концентра­ции. Так, продукты электролиза концентрированного и разбав­ленного растворов NaCl - хлор и кислород соответственно.

Электролиз разбавленного раствора хлорида натрия прохо­дит без разряжения ионов Сl – (и соответственно ионов Na +), т.е. происходит разложение воды. По мере повышения концент­рации соли на аноде вместе с кислородом начинается выделение хлора, и в концентрированных растворах образуется хлор (с примесью кислорода):

на катоде 2H 2 O + 2ē = H 2 + 2OH –

на аноде 2Сl – – 2ē = Cl 2 .

Суммарное уравнение:

2Cl – + 2H 2 O = H 2 + Cl 2 + 2OH –

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH.

Продукты электролиза: водород, хлор и гидроксид натрия.

В случае выделения хлора при электролизе растворов хлори­дов на основной процесс образования хлора накладываются ре­акции взаимодействия хлора с водой (гидролиз) и последующих превращений образующихся веществ. Гидролиз хлора проходит с образованием слабой хлорноватистой кислоты и хлорид-ионов (соляная кислота):

Сl 2 + Н 2 О = Н + + Сl – + НС1О.

Хлорноватистая кислота с образующейся при электролизе ще­лочью (точнее, Na + +OH –) дает в качестве продукта гипохлорит натрия NaClO. В щелочной среде суммарное уравнение реакции имеет вид:

Сl 2 + 2NaOH = NaCl + NaClO + Н 2 О.

При повышенных температурах (кипение воды) гидролиз хло­ра проходит с образованием хлорат-иона. Возможные уравнения реакций:

3Cl 2 + 3H 2 O = ClO 3 – + 5 Cl – + 6H + ,

3НСlO = СlO 3 – + 2Сl – + 3Н + ,

3СlО – = СlO 3 – + 2Сl – .

В щелочной среде суммарное уравнение имеет вид

3Сl 2 + 6NaOH = NaClO 3 + 5NaCl + 3Н 2 О.

Электролиз с диафрагмой. При электролизе разбавленного раствора хлорида натрия к катоду перемещаются ионы Na + , но выделяется водород:

2Н 2 О+2ē = Н 2 + ОН –

и концентрируется раствор гидроксида натрия.

К аноду перемещаются хлорид-ионы, но из-за их низкой концентрации в основном образуется не хлор, а кислород:

2H 2 O – 4ē = O 2 + 4H +

и концентрируется раствор соляной кислоты.

Если электролиз проводится в химическом стакане или дру­гом подобном сосуде, растворы щелочи и кислоты смешиваются и электролиз сводится к образованию водорода и кислорода за счет разложения воды. Если же анодное и катодное пространства разделить перегородкой (диафрагмой), пропускающей ионы-пе­реносчики тока, но препятствующей смешению приэлектродных растворов, то можно в качестве продуктов электролиза получить растворы кислоты и щелочи.

При электролизе раствора хлорида натрия гидроксид-ионы, образовавшиеся на катоде по реакции:

2H 2 O + 2ē = H 2 + 2OH –

сразу же начинают участвовать в переносе электричества и вместе с ионами С1 – перемещаются к аноду, где оба иона разряжаются и образуется смесь кислорода и хлора. Поэтому выход хлора падает. Если анод изготовлен из угля (графита), то он окисляется кислородом и образуются оксиды углерода СО и СО 2 , загрязня­ющие хлор. Далее хлор, образующийся на аноде, взаимодейству­ет с гидроксид-ионами:

С1 2 + ОН – = Н + + Сl – + ОСl – .

Образование гипохлорит-ионов - также нежелательный про­цесс (если получение раствора гипохлорита натрия не является целью). Всех этих нежелательных последствий удается избежать, если пользоваться диафрагмой, разделяющей катодное и анодное пространства и задерживающей ионы ОН – , но пропускающей ионы Сl – . Наконец, диафрагма препятствует диффузии газов и позволяет получить более чистый водород.

Если в растворе содержится несколько анионов, предска­зать последовательность их разряжения на аноде сложнее, чем катионов, но, вообще говоря, соблюдается правило, что в пер­вую очередь разряжается анион, характеризующийся самым низ­ким значением потенциала (или самым высоким отрицательным значением электродного потенциала реакции, проходящей на аноде).

Электролиз растворов с растворимым анодом. Электролиз с растворимым анодом возможен тогда, когда металл легче отдает электроны, чем ионы Сl – , ОН – или молеку­лы воды. Например, на медном аноде в растворе хлорида или сульфата меди хлор или кислород не выделяются, а происходит переход в раствор ионов Сu 2+ . Одновременно на катоде те же ионы разряжаются и осаждается металлическая медь. Таким образом, электролиз с растворимым анодом сводится к переносу меди с анода на катод.

Реакция на аноде в большинстве случаев усложняется много­численными побочными и часто нежелательными процессами. Например, образующиеся ионы могут образовывать оксиды, гидроксиды и их пленки:

М 2+ + 2ОН – = МО + Н 2 О.

На аноде возможно также выделение кислорода:

2H 2 O – 4ē = O 2 + 4H + ,

который может участвовать в самых различных реакциях элек­тролитической системы.

При образовании газообразных продуктов, особенно кисло­рода, в большинстве случаев потенциалы разложения не соот­ветствуют электродным потенциалам из-за высоких значений перенапряжения. Перенапряжением называют разность между реальным напряжением разложения и теоретически рассчитан­ным из электродных потенциалов ЭДС соответствующей реак­ции . Особенно сильно влияют на величину перенапряжения при­рода выделяющегося вещества (для хлора, брома и йода перенапряжение очень незначительно) и материал элек­трода. Ниже приведены данные по перенапряжению при выделе­нии водорода и кислорода на различных катодах и анодах.

Электрод Перенапряжение, В

Водород Кислород

Pt черненая 0,00 0,2–0,3

Pt блестящая 0,1 0,4–0,5

Fe 0.1–0,2 0,2–0,3

Ni 0,1–0,2 0,1–0,3

Сu 0,2 0,2–0,3

Pb 0,4–0,6 0,2–0,3

Перенапряжение зависит также от формы электродов, состояния их поверхности, плотности тока, температуры раствора, интенсивности перемешивания раствора и других факторов.

Перенапряжение водорода на железе равно ~ 0,1 В, а кисло­рода на том же материале ~ 0,3 В. Следовательно, перенапряже­ние при электролизе на железных электродах составит 0,1 + 0,3 = 0,4 В. Сумма этого значения и теоретически вычислен­ного составит минимальное значение напряжения разряжения соответствующего электролита.

Отношение к перенапряжению - двойственное. С одной сто­роны, перенапряжение приводит к повышенному расходу элек­троэнергии, с другой стороны, благодаря перенапряжению удает­ся осаждать из водных растворов многие металлы, которые по значениям их стандартных электродных потенциалов осаждаться не должны. Это Fe, Pb, Sn, Ni, Co, Zn, Cr. Именно благодаря перенапряжению, а также влиянию концентрации раствора на электродный потенциал возможны электролитическое хромиро­вание и никелирование железных изделий, а на ртутном электро­де удается получить из водного раствора даже натрий.

Разряжение в водном растворе ионов Сl – , а не ОН – в раство­рах с высокой концентрацией электролита также объясняется перенапряжением кислорода. Однако этого перенапряжения ока­зывается недостаточно, чтобы произошло разряжение ионов F – и выделение свободного фтора.

На величину перенапряжения влияют многие другие кинетические факторы - скорости переноса частиц к электродам и от­вода продуктов электролиза, скорость процесса разрушения гидратных и других оболочек разряжающихся ионов, скорость со­единения атомов в двухатомные газовые молекулы и т. п.

Лучшие статьи по теме