Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Фундаменты 
  • Что такое электрический ток в вакууме. Электрический ток в вакууме. Электронная эмиссия. Как электрический ток может появиться в вакууме

Что такое электрический ток в вакууме. Электрический ток в вакууме. Электронная эмиссия. Как электрический ток может появиться в вакууме

Это краткий пересказ.

Работа над полной версией продолжается


Лекция 20

Ток в вакууме

1. Замечание о вакууме

Электрического тока в вакууме нет, т.к. в термодинамическом вакууме отсутствуют какие-либо частицы.

Однако наилучший достигнутый практически вакуум составляет

,

т.е. огромное количество частиц.

Тем не менее, когда говорят о токе в вакууме, подразумевают идеальный в термодинамическом смысле вакуум, т.е. полное отсутствие частиц. За протекание тока отвечают частицы, полученные из какого-либо источника.

2. Работа выхода

Как известно, в металлах существует электронный газ, который удерживается силой притяжения к кристаллической решетке. В нормальных условиях энергия электронов не велика, поэтому они удерживаются внутри кристалла.

Если подходить к электронному газу с классических позиций, т.е. считать, что он подчиняется распределению Максвелла-Больцмана, то очевидно, что существует большая доля частиц, скорости которых выше средних. Следовательно, эти частицы обладают достаточной энергией, чтобы вырваться за пределы кристалла и образовать вблизи него электронное облако.

Поверхность металла при этом заряжается положительно. Образуется двойной слой, который препятствует удалению электронов от поверхности. Следовательно, чтобы удалить электрон, необходимо сообщить ему дополнительную энергию.

Определение: Работой выхода электронов из металла называется энергия, которую необходимо сообщить электрону, чтобы удалить его с поверхности металла в бесконечность в состоянии с нулевой E k .

Для разных металлов работа выхода различна.



Металл

Работа выхода, эВ

1,81

3. Электронная эмиссия.

В обычных условиях энергия электронов достаточно мала и они связаны внутри проводника. Существуют способы сообщения электронам дополнительной энергии. Явление испускания электронов при внешнем воздействии называется электронной эмиссией, и было открыто Эдисоном в 1887 году. В зависимости от способа сообщения энергии различают 4 вида эмиссии:

1. Термоэлектронная эмиссия (ТЭЭ), способ – подвод тепла (нагрев).

2. Фотоэлектронная эмиссия (ФЭЭ), способ – освещение.

3. Вторичная электронная эмиссия (ВЭЭ), способ – бомбардировка частицами.

4. Автоэлектронная эмиссия (АЭЭ), способ – сильное электрическое поле.

4. Автоэлектронная эмиссия

Под действием сильного электрического поля электроны могут вырываться с поверхности металла.

Данной величины напряженности хватает, чтобы вырвать электрон.

Данное явление называется холодной эмиссией. Если поле достаточно сильное, то число электронов может стать большим, а, следовательно, большим ток. По закону Джоуля – Ленца будет выделяться большое количество теплоты и АЭЭ может перейти в ТЭЭ.

5. Фотоэлектронная эмиссия (ФЭЭ)

Явление фотоэффекта известно достаточно давно, смотри «Оптика».

6. Вторичная электронная эмиссия (ВЭЭ)

Это явление применяется в фотоэлектронных умножениях (ФЭУ).

При работе происходит лавинообразное нарастание числа электронов. Применяется для регистрации слабых световых сигналов.

7. Вакуумный диод.

Для изучения ТЭЭ применяют устройство, которое называется вакуумный диод. Чаще всего конструктивно он представляет собой два коаксиальных цилиндра, помещенных в стеклянную вакуумную колбу.

Нагрев катода осуществляется электрическим током прямым или косвенным способом. При прямом – ток проходит через сам катод, при косвенном – внутри катода помещают дополнительный проводник – нить накала. Разогрев происходит до достаточно высоких температур, поэтому катод делают сложным. Основа – тугоплавкий материал (вольфрам), а покрытие – материал с малой работой выхода (цезий).

Диод относится к нелинейным элементам, т.е. он не подчиняется закону Ома. Говорят, что диод – это элемент с односторонней проводимостью. Большая часть ВАХ диода описывается законом Богуславского – Ленгмюра или законом «3/2»

При повышении температуры накала ВАХ сдвигается вверх и ток насыщения растет. Зависимость плотности тока насыщения от температуры описывается законом Ричардсона – Дешмана

Методами квантовой статистики можно получить эту формулу с const = B одинаковой для всех металлов. Эксперимент показывает, что константы различны.

8. Однополупериодный выпрямитель


9. Двухполупериодный выпрямитель (самостоятельно).

10. Применение ламп.

К достоинствам ламп относят

· лёгкость управления потоком электронов,

· большая мощность,

· большой участок почти линейной ВАХ.

· Лампы используют в мощных усилителях.

К недостаткам относятся:

· низкий КПД,

· высокое потребление энергии.


До того, как в радиотехнике стали использовать полупроводниковые приборы, везде использовались электронные лампы.

Понятие вакуума

Электронная лампа представляла собой запаянный с обоих концов стеклянный тубус, в одном стороне которого располагался катод, а в другом анод. Из тубуса отчаливали газ до такого состояния, при котором молекулы газа могли пролететь от одной стенки до другой и при этом не столкнуться. Такое состояние газа называется вакуум . Другими словами вакуум - это сильноразреженный газ.

В таких условиях проводимость внутри лампы можно обеспечить только путем введения внутрь источника заряженных частиц. Для того, чтобы внутри лампы появились заряженные частицы пользовались таким свойством тел, как термоэлектронная эмиссия.

Термоэлектронная эмиссия – это явление испускания телом электронов, под действием высокой температуры. У очень многих веществ термоэлектронная эмиссия начинается при температурах, при которых еще не может начаться испарение самого вещества. В лампах из таких веществ делали катоды.

Электрический ток в вакууме

Катод потом нагревали, вследствие чего он начинал постоянно испускать электроны. Эти электроны образовывали вокруг катода электронное облако. При подключении к электродам источника питания, между ними образовывалось электрическое поле.

При этом, если положительный полюс источника соединить с анодом, а отрицательный с катодом, то вектор напряженности электрического поля будет направлен в сторону катода. Под действием этой силы, некоторые электроны вырываются из электронного облака и начинают двигаться к аноду. Тем самым они создают электрический ток внутри лампы.

Если же подключить лампу иначе, положительный полюс соединить с катодом, а отрицательный с анодом, то напряженность электрического поля будет направлена от катода к аноду. Это электрическое поле будет отталкивать электроны назад к катоду, и проводимости не будет. Цепь останется разомкнутой. Это свойство получило название односторонней проводимости .

Вакуумный диод

Раньше односторонняя проводимость широко использовалась в электронных приборах с двумя электродами. Такие приборы назывались вакуумными диодами . Они выполняли в свое время роль, которую выполняют сейчас полупроводниковые диоды.

Чаще всего использовались для выпрямления электрического тока. В данный момент вакуумные диоды практически нигде не применяются. Вместо них все прогрессивное человечество использует полупроводниковые диоды.

Вакуум – состояние разреженного газа, при котором длина свободного пробега молекул λ больше размеров сосуда d, в котором находится газ.

Из определения вакуума следует, что между молекулами практически отсутствует взаимодействие, поэтому ионизация молекул произойти не может, следовательноно, свободных носителей заряда в вакууме получить нельзя, поэтому - электрический ток в нем невозможен;
Чтобы создать электрический ток в вакууме, нужно в него поместить источник свободных заряженных частиц. В вакуум помещают металлические электроды, подключенные к источнику тока. Один из них нагревают (он называется катодом), в результате чего происходит процесс ионизации, т.е. из вещества вылетают электроны, образуются положительные и отрицательные ионы. Действие такого источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Термоэлектронная эмиссия – это процесс испускания электронов с нагретого катода. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака, электроны из облака частично возвращаются на электрод. В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака. Работа, которую должен совершить электрон, чтобы покинуть металл, получила название работы выхода А вых.

[А вых ] = 1 эВ

1 эВ – это энергия, которую приобретает электрон, двигаясь в электрическом поле между точками с разностью потенциалов в 1 В.

1 эВ = 1,6*10 -19 Дж

Различие между температурами горячих и холодных электродов, впаянных в сосуд, из которого откачан воздух, приводит к односторонней проводимости электрического тока между ними.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединен с холодным электродом (анодом), а отрицательный – с нагретым (катодом), то вектор напряженности электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника, напряженность поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.


Устройство, которое обладает односторонней проводимостью электрического тока называется вакуумный диод. Состоит из электронной лампы (сосуда), из которой выкачан воздух и в котором находятся электроды, подключенные к источнику тока. Вольтамперная характеристика вакуумного диода. Подписать участки ВАХ пропускной режим диода и закрытый?? При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод используется для выпрямления переменного электрического тока. В настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Электронный пучок – это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:
- отклоняются в электрических полях;
- отклоняются в магнитных полях под действием силы Лоренца;
- при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
- вызывает свечение (люминисценцию) некоторых твердых и жидких тел;
- нагревают вещество, попадая на него.

Электронно-лучевая трубка (ЭЛТ).
В ЭЛТ используются явления термоэлектронной эмиссии и свойства электронных пучков.

В электронной пушке электроны, испускаемые подогреваемым катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.

Существуют два вида трубок:
1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь электрическим полем);
2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).
В электронно-лучевых трубках формируются узкие электронные пучки, управляемые электрическими и магнитными полями. Эти пучки используются в: кинескопах телевизоров, дисплеях ЭВМ, электронных осциллографах в измерительной технике.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Э л ектрический ток в вакууме

1. Электронно-лучевая трубка

Вакуум-это такое состояние газа в сосуде, при котором молекулы пролетают от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом.

Вакуум-изолятор, ток в нем может возникнуть только за счет искусственного введения заряженных частиц, для этого используют эмиссию (испускание) электронов веществами. В вакуумных лампах с нагреваемыми катодами происходит термоэлектронная эмиссия, а в фотодиоде фотоэлектронная.

Объясним, почему нет самопроизвольного испускания свободных электронов металлом. Существование таких электронов в металле - следствие тесного соседства атомов в кристалле. Однако свободны эти электроны только в том смысле, что они не принадлежат конкретным атомам, но остаются принадлежащими кристаллу в целом. Некоторые из свободных электронов, оказавшись в результате хаотического движения у поверхности металла, вылетают за его пределы. Микро участок поверхности металла, который до этого был электрически нейтральным, приобретает положительный некомпенсированный заряд, под влиянием которого вылетевшие электроны возвращаются в металл. Процессы вылета - возврата происходят непрерывно, в результате чего над поверхностью металла образуется сменное электронное облако, и поверхность металла образуют двойной электрический слой, против удерживающих сил которого должна быть совершена работа выхода. Если эмиссия электронов происходит, значит, некоторые внешние воздействия (нагрев, освещение) совершили такую работу

Термоэлектронная эмиссия-свойство тел, нагретых до высокой температуры, испускать электроны.

Электронно-лучевая трубка представляет собой стеклянную колбу, в которой создан высокий вакуум (10 в -6 степени-10 в -7 степени мм рт. ст.). Источником электронов является тонкая проволочная спираль (она же - катод). Напротив катода расположен анод в форме пустотелого цилиндра, к которому электронный пучок попадает, пройдя через фокусирующий цилиндр, содержащий диафрагму с узким отверстием. Между катодом и анодом поддерживается напряжение несколько киловольт. Ускоренные электрическим полем электроны вылетают из отверстия диафрагмы и летят к экрану, изготовленного из вещества, светящегося под действием ударов электронов.

Для управления электронным лучом служат две пары металлических пластин, одна из которых расположена вертикально, а другая горизонтально. Если левая из пластин имеет отрицательный потенциал, а правая - положительный, то луч отклонится вправо, а если полярность пластин изменить, то луч отклонится влево. Если же на эти пластины подать напряжение, то луч будет совершать колебания в горизонтальной плоскости. Аналогично будет колебаться луч в вертикальной плоскости, если переменное напряжение на вертикально отклоняющие пластины. Предыдущие пластины - горизонтально отклоняющие.

2. Электрический ток в вакууме

Что такое вакуум?

Это такая степень разрежения газа, при которой соударений молекул практически нет;

Электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;

Создать эл.ток в вакууме можно, если использовать источник заряженных частиц; лучевой трубка вакуумный диод

Действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

3. Вакуумный диод

Электрический ток в вакууме возможен в электронных лампах.

Электронная лампа - это устройство, в котором применяется явление термоэлектронной эмиссии.

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа.

Внутри стеклянного баллона создается очень низкое давление

Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает

постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.

Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

4. Вольтамперная характеристика вакуумного диода

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения.

Вакуумный диод используется для выпрямления переменного тока.

Ток на входе диодного выпрямителя

Ток на выходе выпрямителя

5. Электронные пучки

Это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:

Отклоняются в электрических полях;

Отклоняются в магнитных полях под действием силы Лоренца;

При торможении пучка, попадающего на вещество возникает рентгеновское излучение;

Вызывает свечение (люминисценцию) некоторых твердых и жидких тел (люминофоров);

Нагревают вещество, попадая на него.

6. Электронно - лучевая трубка (ЭЛТ)

Используются явления термоэлектронной эмиссии и свойства электронных пучков.

ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих пластин-электродов и экрана.

В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.

Существуют два вида трубок:

1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);

2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).

Основное применение ЭЛТ:

кинескопы в телеаппаратуре;

дисплеи ЭВМ;

электронные осциллографы в измерительной технике.

Размещено на Allbest.ru

...

Подобные документы

    Вакуум - состояние газа при давлении меньше атмосферного. Поток электронов в вакууме как разновидность электрического тока. Явление термоэлектронной эмиссии, его применение. Вакуумный диод (двухэлектродная лампа). Вольтамперная характеристика диода.

    реферат , добавлен 24.10.2008

    Понятие электрического тока и условия его возникновения. Сверхпроводимость металлов при низких температурах. Понятия электролиза и электролитической диссоциации. Электрический ток в жидкостях. Закон Фарадея. Свойства электрического тока в газах, вакууме.

    презентация , добавлен 27.01.2014

    Понятие электрического тока. Поведение потока электронов в разных средах. Принципы работы вакуумно-электронной лучевой трубки. Электрический ток в жидкостях, в металлах, полупроводниках. Понятие и виды проводимости. Явление электронно-дырочного перехода.

    презентация , добавлен 05.11.2014

    Основные понятия и специальные разделы электродинамики. Условия существования электрического тока, расчет его работы и мощности. Закон Ома для постоянного и переменного тока. Вольт-амперная характеристика металлов, электролитов, газов и вакуумного диода.

    презентация , добавлен 30.11.2013

    Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

    презентация , добавлен 18.01.2012

    Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация , добавлен 15.05.2009

    Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

    презентация , добавлен 28.01.2011

    Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

    презентация , добавлен 26.11.2013

    Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа , добавлен 10.05.2013

    Понятие электрического тока. Закон Ома для участка цепи. Особенности протекания тока в металлах, явление сверхпроводимости. Термоэлектронная эмиссия в вакуумных диодах. Диэлектрические, электролитические и полупроводниковые жидкости; закон электролиза.

Лучшие статьи по теме