Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Теплоснабжение
  • Изгиб балки при действии продольных и поперечных сил. Дифференциальные зависимости между продольной силой, нагрузкой, деформацией Балка нагруженная продольной силой

Изгиб балки при действии продольных и поперечных сил. Дифференциальные зависимости между продольной силой, нагрузкой, деформацией Балка нагруженная продольной силой

В точках поперечных сечений бруса при продольнопоперечном изгибе возникают нормальные напряжения от сжатия продольными силами и от изгиба поперечными и продольными нагрузками (рис. 18.10).

В наружных волокнах балки в опасном сечении суммарные нормальные напряжения имеют наибольшие значения:

В рассмотренном выше примере сжатой балки с одной поперечной силой согласно (18.7) получаем такие напряжения в наружных волокнах:

Если опасное сечение симметрично относительно его нейтральной оси, то наибольшим по абсолютной величине будет напряжение в наружных сжатых волокнах:

В сечении, не симметричном относительно нейтральной оси, наибольшим по абсолютной величине может быть как сжимающее, так и растягивающее напряжение в наружных волокнах.

При установлении опасной точки следует учитывать различие в сопротивлении материала растяжению и сжатию.

Учитывая выражение (18.2), формулу (18.12) можно записать так:

Применяя приближенное выражение для получаем

Опасным в балках постоянного сечения будет то сечение, для которого числитель второго слагаемого имеет наибольшее значение.

Размеры поперечного сечения бруса должны быть подобраны так, чтобы не превышало допускаемого напряжения

Однако полученная зависимость между напряжениями и геометрическими характеристиками сечения сложна для проектировочного расчета; размеры сечения можно подобрать только методом повторных попыток. При продольно-поперечном изгибе проводится, как правило, поверочный расчет, назначение которого установить запас прочности детали.

При продольно-поперечном изгибе между напряжениями и продольными силами нет пропорциональности; напряжения при переменной осевой силе растут быстрее, чем сама сила, что видно, например, из формулы (18.13). Поэтому запас прочности в случае продольно-поперечного изгиба надо определять не по напряжениям, т. е. не из отношения а по нагрузкам, понимая под запасом прочности число, показывающее, во сколько раз надо увеличить действующие нагрузки, чтобы максимальное напряжение в рассчитываемой детали достигло предела текучести.

Определение запаса прочности связано с решением трансцендентных уравнений, так как сила содержится в формулах (18.12) и (18.14) под знаком тригонометрической функции. Например, для балки, сжатой силой и нагруженной одной поперечной силой Р, запас прочности согласно (18.13) находится из уравнения

Для упрощения задачи можно воспользоваться формулой (18.15). Тогда для определения запаса прочности получаем квадратное уравнение:

Заметим, что в случае, когда продольная сила остается постоянной, а изменяются по величине только поперечные нагрузки, задача определения запаса прочности упрощается, и возможно определение не по нагрузке, а по напряжениям. Из формулы (18.15) для этого случая находим

Пример. Двухопорная дюралюминиевая балка двутаврового тонкостенного сечения сжата силой Р и подвергнута действию равномерно распределенной поперечной нагрузки интенсивностью и моментов приложенных на концах

балки, как показано на рис. 18.11. Определить напряжение в опасной точке и максимальный прогиб с учетом и без учета изгибающего действия продольной силы Р, а также найти запас прочности балки по пределу текучести .

В расчетах принять Характеристики двутавра:

Решение. Наиболее нагруженным является среднее сечение балки. Максимальный прогиб и изгибающий момент от одной только поперечной нагрузки:

Максимальный прогиб от совместного действия поперечной нагрузки и продольной силы Р определим по формуле (18.10). Получим

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(сжаты нижние волокна).

Участок DC: (сжаты верхние волокна).

Участок СК: (сжаты левые волокна)

(сжаты левые волокна)

На рисунке - эпюры нормальных (продольных ) сил — (б), поперечных сил — (в) и изгибающих моментов — (г).

Проверка равновесия узла С:

Задача 2 Построить эпюры внутренних усилий для рамы (рис. а).

Дано: F=30кН, q=40 кН/м, М=50кНм, а=3м, h=2м.

Определим опорные реакции рамы:

Из этих уравнений найдем:

Поскольку значения реакции R K имеет знак минус , на рис. а изменяется направление данного вектора на противоположное , при этом записывается R K =83,33кН .

Определим значения внутренних усилий N, Q и М в характерных сечениях рамы:

Участок ВС :

(сжаты правые волокна) .

Участок CD:

(сжаты правые волокна);

(сжаты правые волокна).

Участок DE:

(сжаты нижние волокна);

(сжаты нижние волокна).

Участок КС

(сжаты левые волокна).

Построим эпюры нормальных (продольных) сил (б), поперечных сил (в) и изгибающих моментов (г).

Рассмотрим равновесие узлов D и Е

Из рассмотрения узлов D и Е видно, что они находятся в равновесии .

Задача 3. Для рамы с шарниром построить эпюры внутренних усилий.

Дано: F=30кН, q=40 кН/м, М=50кНм, а=2м, h=2м.

Решение. Определим опорные реакции . Следует отметить,что в обеих шарнирно-неподвижных опорах по две реакции. В связи с этим следует использовать свойство шарнира С момент в нем как от левых,так и от правых сил равен нулю . Рассмотрим левую часть.

Уравнения равновесия для рассматриваемой рамы можно записать в виде:

Из решения данных уравнений следует:

На схеме рамы направление действия силы Н В изменяется на противоположное (Н B =15кН ).

Определим усилия в характерных сечениях рамы.

Участок BZ:

(сжаты левые волокна).

Участок ZC:

(сжаты левые волокна);

Участок КD:

(сжаты левые волокна);

(сжаты левые волокна).

Участок DС:

(сжаты нижние волокна);

Определение экстремального значения изгибающего момента на участке CD:

1. Построение эпюры поперечных сил. Для консольной балки (рис. а ) характерные точки: А – точка приложения опорной реакции V A ; С – точка приложения сосредоточенной силы; D , B – начало и конец распределенной нагрузки. Для консоли поперечная сила определяется аналогично двухопорной балке. Итак, при ходе слева:

Для проверки правильности определения поперечной силы в сечениях пройдите балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Помните, что правило знаков при этом изменятся. Результат должен получиться тот же. Строим эпюру поперечной силы (рис,б ).

2. Построение эпюры моментов

Для консольной балки эпюра изгибающих моментов строится аналогично предыдущему построению.Характерные точки для этой балки (см. рис. а ) следующие: А – опора; С - точка при­ложения сосредоточенного момента и силы F ; D и В - начало и конец действия рав­номерно распределенной на­грузки. Поскольку эпюра Q x на участке действия распределенной нагрузки нулевую линию не пересекает , для построения эпюры моментов на данном участке (параболическая кривая) следует выбрать произвольно дополнительную точку для построения кривой, к примеру в середине участка.

Ход слева:

Ходом справа находим M B = 0.

По найденным значениям строим эпюру изгибающих моментов (см. рис. в ).

Запись опубликована автором admin ограничивается наклонной прямой , а на участке, на котором нет распределенной нагрузки, - прямой, параллельной оси , поэтому для построения эпюры поперечных сил достаточно определить значения Q у в начале и конце каждого участка. В сечении, соответствующем точке приложения сосредоточенной силы, поперечная сила должна быть вычислена чуть левее этой точки (на бесконечно близком расстоянии от нее) и чуть правее ее; поперечные силы в таких местах обозначаются соответственно .

Строим эпюру Q у методом характерных точек, ходом слева. Для большей наглядности отбрасываемую часть балки на первых порах рекомендуется закрывать листом бумаги. Характерными точками для двухопорной балки (рис. а ) будут точки C и D – начало и конец распределенной нагрузки, а также A и B – точки приложения опорных реакций, E – точка приложения сосредоточенной силы. Проведем мысленно ось y перпендикулярно оси балки через точку С и не будем менять ее положение, пока не пройдем всю балку от C до E . Рассматривая левые отсеченные по характерным точкам части балки, проецируем на ось y действующие на данном участке силы с соответствующими знаками. В результате получаем:

Для проверки правильности определения поперечной силы в сечениях можно пройти балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Результат должен получиться тот же. Совпадение результатов может служить контролем построения эпюры Q у . Проводим нулевую линию под изображением балки и от нее в принятом масштабе откладываем найденные значения поперечных сил с учетом знаков в соответствующих точках. Получим эпюру Q у (рис. б ).

Построив эпюру, обратите внимание на следующее: эпюра под распределенной нагрузкой изображается наклонной прямой, под ненагруженными участками - отрезками, параллельными нулевой линии, под сосредоточенной силой на эпюре образуется скачок, рав­ный значению силы. Если наклонная линия под распределенной на­грузкой пересекает нулевую линию, отметьте эту точку, то это точка экстремума , и она является теперь для нас характерной, согласно дифференциальной зависимости между Q у и М x , в этой точке момент имеет экстремум и его нужно будет определить при построении эпюры изгибающих моментов. В нашей задаче это точка К . Сосредоточенный момент на эпю­ре Q у себя никак не проявляет, так как сумма проекций сил, образую­щих пару, равна нулю.

2. Построение эпюры моментов. Строим эпюру изгибающих моментов, как и поперечных сил, ме­тодом характерных точек, ходом слева. Известно, что на участке балки с равномерно распределенной нагрузкой эпюра изгибающих моментов очерчивается кривой линией (квадратичной параболой) , для построения которой надо иметь не менее трех точек и, следовательно, должны быть вычислены значе­ния изгибающих моментов в начале участка, конце его и в одном проме­жуточном сечении. Такой промежуточной точкой лучше всего взять сечение, в кото­ром эпюра Q у пересекает нулевую линию, т.е. где Q у = 0. На эпюре М в этом сечении должна находиться вершина параболы. Если же эпюра Q у не пересекает нулевую линию, то для построения эпюры М следует на данном участке взять дополнительную точку, к примеру, в середине участка (начала и конца действия распределенной нагрузки), помня, что выпуклостью парабола всегда обращена вниз, если на­грузка действует сверху вниз (для строительных специальностей). Существует правило «дождя», которое очень помогает при построении параболической части эпю­ры М . Для строителей это правило выглядит следующим образом: представьте, что распределенная нагрузка - это дождь, подставьте под него зонт в перевернутом виде, так чтобы дождь не стекал, а собирался в нем. Тогда выпуклость зонта будет обращена вниз. Точно так и бу­дет выглядеть очертание эпюры моментов под распределенной нагрузкой. Для механиков существует так называемое правило «зонта». Распределенная нагрузка представляется дождем, а очертание эпюры должно напоминать очертания зонтика. В данном примере эпюра построена для строителей.

Если требуется более точное построение эпюры, то должны быть вычислены значения изгибающих моментов в нескольких промежуточ­ных сечениях. Условимся для каждого такого участка изгибающий момент сначала определить в произвольном сечении, выражая его через расстояние х от какой-либо точки. Затем, давая расстоянию х ряд значений, получим значения изгибающих моментов в соответствую­щих сечениях участка. Для участков, на которых нет распределенной нагрузки, изгибающие моменты определяют в двух сечениях, соот­ветствующих началу и концу участка, так как эпюра М на таких участках ограничивается прямой. Если к балке приложен внешний сосредоточенный момент, то обязательно надо вычислять изгибающий момент чуть левее места приложения сосредоточенного момента и чуть правее его.

Для двухопорной балки характерные точки следующие: C и D – начало и конец распределенной нагрузки; А опора балки; В вторая опора балки и точка приложения сосредоточенного момента; Е правый конец балки; точка К , соответствующая сечению балки, в котором Q у = 0.

Ход слева. Правую часть до рассматриваемого сечения мысленно отбрасываем (возьмите лист бумаги и прикройте им отбрасываемую часть балки). Находим сумму моментов всех сил, действующих слева от сечения относительно рассматриваемой точки. Итак,

Прежде чем определить момент в сечении К , необходимо найти расстояние х=АК . Составим выражение для поперечной силы в данном сечении и приравняем его к нулю (ход слева):

Это расстояние можно найти также из подобия треугольников KLN и KIG на эпюре Q у (рис.б ) .

Определяем момент в точке К :

Пройдем оставшуюся часть балки ходом справа.

Как видим, момент в точке D при ходе слева и справа получился одинаковый – эпюра замкнулась. По найденным значениям строим эпюру. Положительные значения откладываем вниз от нулевой линии, а отрицательные – вверх (см. рис. в ).

Основные понятия. Поперечная сила и изгибающий момент

При изгибе поперечные сечения, оставаясь плоскими, поворачиваются относительно друг друга вокруг некоторых осей, лежащих в их плоскостях. На изгиб работают балки, оси, валы и другие детали машин и элементы конструкций. В практике встречаются поперечный (прямой), косой и чистый виды изгиба.

Поперечным (прямым) (рис. 61, а) называется изгиб, когда внешние силы, перпендикулярные продольной оси балки, действуют в плоскости, проходящей через ось балки и одну из главных центральных осей её поперечного сечения.

Косой изгиб (рис. 61, б) это изгиб, когда силы действуют в плоскости, проходящей через ось балки, но не проходящей ни через одну из главных центральных осей её поперечного сечения.

В поперечных сечениях балок при изгибе возникают два вида внутренних сил - изгибающий момент М и и поперечная сила Q. В частном случае, когда поперечная сила равна нулю, а возникает только изгибающий момент, то имеет место чистый изгиб (рис. 61, в). Чистый изгиб возникает при нагружении распределенной нагрузкой или при некоторых нагружениях сосредоточенными силами, например, балка, нагруженная двумя симметричными равными силами.

Рис. 61. Изгиб: а - поперечный (прямой) изгиб; б - косой изгиб; в - чистый изгиб

При изучении деформации изгиба мысленно представляется, что балка состоит из бесконечного количества волокон, параллельных продольной оси. При чистом изгибе справедлива гипотеза плоских сечений: волокна, лежащие на выпуклой стороне растягиваются , лежащие на вогнутой стороне - сжимаются , а на границе между ними лежит нейтральный слой волокон (продольная ось), которые только искривляются , не изменяя своей длины; продольные волокна балки не оказывают друг на друга давления и, следовательно, испытывают только растяжение и сжатие.

Внутренние силовые факторы в сечениях балок - поперечная сила Q и изгибающий момент М и (рис. 62) зависят от внешних сил и изменяются по длине балки. Законы изменения поперечных сил и изгибающих моментов представляются некоторыми уравнениями, в которых аргументами являются координаты z поперечных сечений балок, а функциями - Q и М и. Для определения внутренних силовых факторов применим метод сечений.

Рис. 62.

Поперечная сила Q есть равнодействующая внутренних касательных сил в поперечном сечении балки. Следует иметь в виду, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики.

Изгибающий момент М и есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки. Изгибающий момент также, как и поперечная сила имеет разное направление для левой и правой части балки. Это говорит о непригодности правила знаков статики при определении изгибающего момента.

Рассматривая равновесие частей балки, расположенных слева и справа от сечения, видно, что в поперечных сечениях должны действовать изгибающий момент М и и поперечная сила Q. Таким образом, в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту", но и касательные, соответствующие поперечной силе.

Для наглядного изображения распределения вдоль оси балки поперечных сил Q и изгибающих моментов М и удобно представлять их в виде эпюр, ординаты которых для любых значений абсциссы z дают соответствующие значения Q и М и. Эпюры строятся аналогично построению эпюр продольных сил (см. 4.4) и крутящих моментов (см. 4.6.1.).

Рис. 63. Направление поперечных сил: а - положительное; б - отрицательное

Так как для установления знаков поперечных сил и изгибающих моментов правила знаков статики неприемлемы, установим для них другие правила знаков, а именно:

  • - если внешние сипы (рис.
  • 63, а), лежащие по левую сторону от сечения, стремятся приподнять левую часть балки или, лежащие по правую сторону от сечения, опустить правую часть балки, то поперечная сила Q положительна;
  • - если внешние силы (рис.
  • 63, б), лежащие по левую сторону от сечения, стремятся опустить левую часть балки или, лежащие по правую сторону от сечения, приподнять правую часть балки, то поперечная сила (Зотрицательна;

Рис. 64. Направление изгибающих моментов: а - положительное; б - отрицательное

  • - если внешняя нагрузка (сила и момент) (рис. 64, а), расположенная слева от сечения, даёт момент, направленный по ходу часовой стрелки или, расположенная справа от сечения, направленный против хода часовой стрелки, то изгибающий момент М и считается положительным;
  • - если внешняя нагрузка (рис. 64, б), расположенная слева от сечения, даёт момент, направленный против хода часовой стрелки или, расположенная справа от сечения, направленный по ходу часовой стрелки, то изгибающий момент М и считается отрицательным.

Правило знаков для изгибающих моментов связано с характером деформации балки. Изгибающий момент считается положительным, если балка изгибается выпуклостью вниз (растянутые волокна расположены внизу). Изгибающий момент считается отрицательным, если балка изгибается выпуклостью вверх (растянутые волокна расположены вверху).

Пользуясь правилами знаков, следует мысленно представлять себе сечение балки жёстко защемлённым, а связи - отброшенными и заменёнными их реакциями. Для определения реакций пользуются правилами знаков статики.

Изгибающий момент, поперечная сила, продольная сила - внутренние усилия возникающие от действия внешних нагрузок (изгиб, поперечная внешняя нагрузка,растяжение-сжатие).

Эпюры -графики изменения внутренних усилий вдоль продольной оси стержня, построенные в определённом масштабе.

Ордината на эпюре показывает значение внутреннего усилия в данной точке оси сечения.

17.Изгибающий момент. Правила (порядок) построения эпюры изгибающих моментов.

Изгибающий момент - внутреннее усилие возникающее от действия внешней нагрузки(изгиба, внецентренного сжатия –растяжения).

Порядок построения эпюры изгибающих моментов :

1.Определение опорных реакций данной конструкции.

2.Определение участков данной конструкции,в пределах которых изгибающий момент будет изменяться по одному и тому же закону.

3.Произвести сечение данной конструкции в окрестности точки, которая разделяет участки.

4.Отбросить одну из частей конструкции, разделённой пополам.

5.Найти момент,который уравновесит действие на одну из оставшихся частей конструкции всех внешних нагрузок и реакций связи.

6.Нанести значение этого момента, с учётом знака и выбранного масштаба, на эпюру.

Вопрос № 18.Поперечная сила. Построение эпюры поперечных сил, используя эпюру изгибающих моментов.

Поперечная сила Q –внутреннее усилие возникающее в стержне под воздействием внешней нагрузки(изгиб, поперечная нагрузка). Поперечная сила направлена перпендикулярно оси стержня.

Эпюра поперечных сил Q строится исходя из следующей дифференциальной зависимости: ,т.е. Первая производная от изгибающего момента по продольной координате равна поперечной силе.

Знак поперечной силы определяется исходя из следующего положения:

Если нейтральная ось конструкции на эпюре моментов поворачивается к оси эпюры по часовой стрелке, то эпюра поперечных сил имеет знак плюс, если против- минус.

В зависимости от эпюры M эпюра Q может принимать тот или иной вид:

1.если эпюра моментов имеет вид прямоугольника, то эпюра поперечных сил равна нулю.

2.Если эпюра моментов представляет собой треугольник, то эпюра поперечных сил имеет вид прямоугольника.

3.Если эпюра моментов имеет вид квадратной параболы, то эпюра поперечных сил имеет треугольника и строится по следующему принципу

Вопрос №19 . Продольная сила. Метод построения эпюры продольных сил используя эпюру поперечных сил. Правило знаков.

Полольная сила N- внутреннее усилие возникающее вследствие центрального и внецентренного растяжения-сжатия. Продольная сила направлена вдоль оси стержня.

Для того что бы построить эпюру продольных усилий нужно:

1.Вырезать узел данной конструкции. Если мы имеем дело с одномерной конструкцией, то сделать сечение на интересующем нас участке этой конструкции.

2.Снять с эпюры Q значения усилий действующих в непосредственной близости от вырезанного узла.

3.Дать направление векторам поперечных сил, исходя из того какой знак имеет данное поперечное усилие на эпюре Q по следующим правилам: если поперечная сила имеет на эпюре Q знак плюс, то её нужно направить так, что бы она вращала данный узел по часовой стрелке, если поперечная сила имеет знак минус –против часовой стрелки. Если внешняя сила проложена к узлу, то её нужно оставить и рассматривать узел вместе с ней.

4.Уравновесить узел продольными усилиями N.

5.Правило знаков для N:если продольная сила направлена к сечению, то она имеет знак минус (работает на сжатие).если продольная сила направлена от сечения, она имеет знак плюс (работает на растяжение).

Вопрос № 20.Правилаприменяемые для проверки правильности построения эпюр внутренних усилий M , Q , N .

1. В сечении, где приложена сосредоточенная сила F, на эпюре Q будет скачок, равный значению этой силы и направленный в ту же сторону (при построении эпюры слева направо), а эпюра М будет иметь перелом, направ- ленный в сторону действия силы F.

2. В сечении, где приложен сосредоточенный изгибающий момент на эпюре М, будет скачок, равный значению момента М; на эпюре Q изменений не будет. При этом направление скачка будет вниз (при построении эпюры слева направо), если сосредоточенный момент действует по ходу часовой стрелки, и вверх, если против хода часовой стрелки.

3.Если на участке, где имеется равномерно распределенная нагрузка, поперечная сила в одном из сечений равна нулю (Q=M"=0), то изгибающий момент в этом сечении принимает экстремальное значение М экстр - максимум или минимум (здесь касательная к эпюре М горизонтальна).

4.Для проверки правильности построения эпюры М можно использовать метод вырезания узлов. При этом момент приложенный в узле нужно при вырезании узла оставлять.

Правильность построения эпюр Q и M можно проверить, дублируя метод вырезания узлов методом сечений и наоборот.

Лучшие статьи по теме