Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Водоснабжение
  • Какое расстояние между нами и сверхновой можно считать безопасным? Как измеряют расстояния до звезд? Пример решения задачи

Какое расстояние между нами и сверхновой можно считать безопасным? Как измеряют расстояния до звезд? Пример решения задачи

И сколько потенциально взрывоопасных звезд расположено на небезопасном расстоянии?

Сверхновая — невероятный по масштабу взрыв звезды — и почти за пределами человеческого воображения. Если бы наше Солнце взорвалось как сверхновая, то получившаяся ударная волна, вероятно, не уничтожила бы всю Землю, но сторона Земли, обращенная к Солнцу, исчезла бы. Ученые считают, что температура планеты в целом увеличилась бы примерно в 15 раз. Более того, Земля не останется на орбите.

Внезапное уменьшение массы Солнца может освободить планету и отправить блуждать в космос. Ясно, что расстояние до Солнца — 8 световых минут — не безопасно. К счастью, наше Солнце не является звездой, которой суждено взорваться как сверхновая. Но другие звезды, вне нашей солнечной системы, могут. Какое ближайшее безопасное расстояние? Научная литература показывает от 50 до 100 световых лет как самое близкое безопасное расстояние между Землей и сверхновой.


Изображение остатка сверхновой 1987А, видимое на оптических длинах волн, снимок Космического телескопа «Хаббл»

Что произойдет, если сверхновая взорвется вблизи Земли? Давайте рассмотрим взрыв звезды, кроме нашего Солнца, но все еще на небезопасном расстоянии. Скажем, сверхновая звезда находится на расстоянии 30 световых лет. Доктор Марк Рид, старший астроном из Гарвард — Смитсоновского центра астрофизики, говорит:

«… если бы была сверхновая, которая находилась примерно в 30 световых годах от нас, это привело бы к сильным воздействиям на Землю, возможно, массовым вымираниям. Рентгеновские лучи и более энергичные гамма-лучи от сверхновой могут разрушить озоновый слой, который защищает нас от солнечных ультрафиолетовых лучей. Он также мог ионизировать азот и кислород в атмосфере, приводя к образованию больших количеств смога подобной закиси азота в атмосфере».

Более того, если бы сверхновая взорвалась в 30 световых годах от нас, особенно пострадали бы фитопланктон и рифовые сообщества. Такое событие сильно истощает базу пищевой цепи океана.

Предположим, что взрыв был немного более далеким. Взрыв близлежащей звезды может оставить Землю, ее поверхность и океанскую жизнь относительно нетронутыми. Но любой относительно близкий взрыв все равно «облил» бы нас гамма-лучами и другими частицами высокой энергии. Это излучение может вызвать мутации в земной жизни. Кроме того, излучение ближайшей сверхновой могло изменить наш климат.

Известно, что сверхновая не вспыхивала на таком близком расстоянии в известной истории человечества. Самая последняя сверхновая, видимая глазу, была сверхновая 1987A, в 1987 году. Она находилась примерно в 168 000 световых годах от нас. До этого последняя вспышка, видимая глазу, была зарегистрирована Иоганном Кеплером в 1604 году. Приблизительно в 20 000 световых годах она светила более ярко, чем любая звезда в ночном небе. Этот взрыв было видно даже при дневном свете! Насколько нам известно, это не вызвало заметных последствий.

Сколько потенциальных сверхновых расположено ближе к нам, чем расстояние от 50 до 100 световых лет? Ответ зависит от вида сверхновой. Сверхновая типа II — стареющая массивная звезда, которая разрушается. Не существует звезд, достаточно массивных, чтобы сделать это в пределах 50 световых лет от Земли.

Но есть и сверхновые I типа — вызванные схлопыванием небольшой бледной звезды белого карлика. Эти звезды тусклы и их трудно обнаружить, поэтому мы не можем быть уверены, сколько их вокруг. Вероятно, несколько сотен из этих звезд находятся в пределах 50 световых лет.

Относительные размеры IK Pegasi A (слева), B (низ, центр) и Солнца (справа).

Звезда IK Pegasi B является ближайшим кандидатом на роль прообраза сверхновой. Это часть бинарной звездной системы, расположенная примерно в 150 световых годах от нашего Солнца и солнечной системы.

Главная звезда в системе — IK Pegasi A — является обычной звездой главной последовательности, мало чем отличающейся от нашего Солнца. Потенциальная сверхновая I типа — другая звезда — IK Pegasi B — массивный белый карлик, который чрезвычайно мал и плотен. Когда звезда А начнет эволюционировать в красного гиганта, ожидается, что она вырастет до радиуса, где столкнется с белым карликом или он начнет тянуть вещество из расширенной газовой оболочки А. Когда звезда В станет достаточно массивной, она может взорваться, как сверхновая.

Что относительно Бетельгейзе? Другой звездой, часто упоминаемой в истории сверхновых звезд, является Бетельгейзе, одна из самых ярких звезд в нашем небе, часть знаменитого созвездия Ориона. Бетельгейзе — звезда сверхгигант. Она по своей сути очень яркая.

Однако такой блеск имеет свою цену. Бетельгейзе — одна из самых известных звезд на небе, потому что она когда-нибудь взорвется. Огромная энергия Бетельгейзе требует, чтобы топливо было израсходовано быстро (условно говоря), и на самом деле Бетельгейзе уже подходит к концу своей жизни. Когда-нибудь скоро (с астрономической точки зрения) у нее закончится топливо, а затем произойдет впечатляющий взрыв сверхновой звезды типа II. Когда это произойдет, Бетельгейзе станет ярче на несколько недель или месяцев, возможно, такой же яркой, как полная Луна и будет видима средь бела дня.

Когда это произойдет? Наверное, не в нашей жизни, но никто не знает это точно. Это может быть завтра или через миллион лет в будущем. Когда это произойдет, все на Земле будут свидетелями впечатляющего события в ночном небе, но земная жизнь не пострадает. Это потому, что Бетельгейзе находится в 430 световых годах от нас.

Как часто вспыхивают сверхновые в нашей галактике? Никто не знает. Ученые предположили, что высокоэнергетическое излучение сверхновых уже вызвало мутации у земных видов, может быть, даже у людей.

Согласно одной из оценок, в окрестностях Земли каждые 15 миллионов лет может быть одно опасное событие сверхновой. Другие ученые говорят, что в среднем взрыв сверхновой происходит в течение 10 парсеков (33 световых года) от Земли каждые 240 миллионов лет. Итак, вы видите, что мы действительно не знаем. Но вы можете сравнить эти цифры с несколькими миллионами лет — то время, когда люди считаются существующими на планете, — и четыре с половиной миллиарда лет для самого возраста Земли.

И, если вы это сделаете, вы увидите, что сверхновая обязательно взорвется около Земли — но, вероятно, не в обозримом будущем человечества.

нравится(3 ) не нравится(0 )


Принцип параллакса на простом примере.

Способ определения расстояния до звёзд с помощью измерения угла видимого смещения (параллакса).

Томас Хендерсон, Василий Яковлевич Струве и Фридрих Бессель впервые измерили расстояния до звёзд методом параллаксов.

Схема расположения звёзд в радиусе 14 световых лет от Солнца. Включая Солнце, в этой области находятся 32 известные звёздные системы (Inductiveload / wikipedia.org).

Следующее открытие (30-е годы XIX века) – определение звёздных параллаксов . Учёные давно подозревали, что звёзды могут быть похожими на далёкие солнца. Однако это всё-таки была гипотеза, причём, я бы сказал, до этого времени практически ни на чём не основанная. Было важно научиться напрямую измерять расстояние до звёзд. Как это делать, люди понимали достаточно давно. Земля вращается вокруг Солнца, и, если, например, сегодня сделать точную зарисовку звёздного неба (в XIX веке сделать фотографию было ещё нельзя), подождать полгода и повторно зарисовать небо, можно заметить, что часть звёзд сместилась относительно других, далёких объектов. Причина проста – мы смотрим теперь на звёзды с противоположного края земной орбиты. Возникает смещение близких объектов на фоне далёких. Это точно так же, как если мы вначале посмотрим на палец одним глазом, а потом другим. Мы заметим, что палец смещается на фоне далёких объектов (или далёкие объекты смещаются относительно пальца, в зависимости от того, какую мы выберем систему отсчёта). Тихо Браге , лучший астроном-наблюдатель дотелескопической эпохи, пытался измерить эти параллаксы, но не обнаружил их. По сути, он дал просто нижний предел расстояния до звёзд. Он сказал, что звёзды как минимум дальше, чем, примерно, световой месяц (хотя, такого термина тогда, конечно, ещё не могло быть). А в 30-е годы развитие технологии телескопических наблюдений позволило точнее измерять расстояния до звёзд. И не удивительно, что сразу три человека в разных частях Земного шара провели такие наблюдения для трёх разных звёзд.

Первым формально правильно расстояние до звёзд измерил Томас Хендерсон . Он наблюдал Альфу Центавра в Южном полушарии. Ему повезло, он практически случайно выбрал самую близкую звезду из тех, которые видны невооружённым глазом в Южном полушарии. Но Хендерсон считал, что ему не хватает точности наблюдений, хотя значение он получил правильное. Ошибки, по его мнению, были большими, и он результат свой сразу не опубликовал. Василий Яковлевич Струве наблюдал в Европе и выбрал яркую звезду северного неба – Вегу. Ему тоже повезло – он мог бы выбрать, например, Арктур, который гораздо дальше. Струве определил расстояние до Веги и даже опубликовал результат (который, как потом оказалось, был очень близок к истине). Однако он несколько раз его уточнял, изменял, и поэтому многие посчитали, что нельзя верить этому результату, поскольку сам автор его постоянно меняет. А Фридрих Бессель поступил по-другому. Он выбрал не яркую звезду, а ту, которая быстро двигается по небу – 61 Лебедя (само название говорит, что, наверное, она не очень яркая). Звёзды немножко двигаются относительно друг друга, и, естественно, чем ближе к нам звёзды, тем заметнее этот эффект. Точно так же, как в поезде придорожные столбы очень быстро мелькают за окном, лес лишь медленно смещается, а Солнце фактически стоит на месте. В 1838 году он опубликовал очень надёжный параллакс звезды 61 Лебедя и правильно измерил расстояние. Эти измерения впервые доказали, что звёзды – это далёкие солнца, и стало ясно, что светимость всех этих объектов соответствуют солнечным значением. Определение параллаксов для первых десятков звёзд позволило построить трёхмерную карту солнечных окрестностей. Всё-таки человеку всегда было очень важно строить карты. Это делало мир как бы чуть более контролируемым. Вот карта, и уже чужая местность не кажется такой загадочной, наверное там не живут драконы, а просто какой-то тёмный лес. Появление измерения расстояний до звёзд действительно сделало ближайшую солнечную окрестность в несколько световых лет какой-то более, что ли, дружелюбной.

Это – глава из стенгазеты, выпущенной благотворительным проектом «Коротко и ясно о самом интересном». Нажмите на миниатюру газеты ниже и читайте остальные статьи по интересующей вас тематике. Спасибо!

Материал выпуска любезно предоставил Сергей Борисович Попов – астрофизик, доктор физико-математических наук, профессор Российской академии наук, ведущий научный сотрудник Государственного астрономического института им. Штернберга Московского государственного университета, лауреат нескольких престижных премий в области науки и просвещения. Надеемся, что знакомство с выпуском будет полезно и школьникам, и родителям, и учителям – особенно сейчас, когда астрономия снова вошла в список обязательных школьных предметов (приказ №506 Минобрнауки от 7 июня 2017 года).

Все стенгазеты, изданные нашим благотворительным проектом «Коротко и ясно о самом интересном», ждут вас на сайте к-я.рф. Есть также

Вследствие годичного движения Земли по орбите близкие звезды немного перемещаются относительно далеких «неподвижных» звезд. За год такая звезда описывает на небесной сфере малый эллипс, размеры которого тем меньше, чем звезда дальше. В угловой мере большая полуось этого эллипса приблизительно равна величине максимального угла, под каким со звезды видна 1 а. е. (большая полуось земной орбиты), перпендикулярная направлению на звезду. Этот угол (), называемый годичным или тригонометрическим параллаксом звезды, равный половине ее видимого смещения за год, служит для измерения расстояния до нее на основе тригонометрических соотношений между сторонами и углами треугольника ЗСА, в котором известен угол и базис - большая полуось земной орбиты (см. рис. 1).

Рисунок 1. Определение расстояния до звезды методом параллакса (А - звезда, З - Земля, С - Солнце).

Расстояние r до звезды, определяемое по величине ее тригонометрического параллакса, равно:

r = 206265""/ (а. е.),

где параллакс выражен в угловых секундах.

Для удобства определения расстояний до звезд с помощью параллаксов в астрономии применяют специальную единицу длины - парсек (пс). Звезда, находящаяся на расстоянии 1 пс, имеет параллакс, равный 1"". Согласно вышеназванной формуле, 1 пс = 206265 а. е. = 3,086·10 18 см.

Наряду с парсеком применяется еще одна специальная единица расстояний - световой год (т. е. расстояние, которое свет проходит за 1 год), он равен 0,307 пс, или 9,46·10 17 см.

Ближайшая к Солнечной системе звезда - красный карлик 12-й звездной величины Проксима Центавра - имеет параллакс 0,762, т. е. расстояние до нее равно 1,31 пс (4,3 световых года).

Нижний предел измерения тригонометрических параллаксов ~0,01"", поэтому с их помощью можно измерять расстояния, не превышающие 100 пс с относительной погрешностью 50%. (При расстояниях до 20 пс относительная погрешность не превышает 10%.) Этим методом до настоящего времени определены расстояния до около 6000 звезд. Расстояния до более далеких звезд в астрономии определяют в основном фотометрическим методом.

Таблица 1. Двадцать ближайших звезд.

Название звезды

Параллакс в секундах дуги

Расстояние, пс

Видимая звездная величина, m

Абсолютная звездная величина, М

Спектральный класс

Проксима Центавра

б Центавра А

б Центавра В

Звезда Барнарда

Лаланд 21185

Спутник Сириуса

Лейтен 7896

е Эридана

Спутник Проциона

Спутник 61 Лебедя

е Индейца

  • 0,762
  • 0,756
  • 0,756
  • 0,543
  • 0,407
  • 0,403
  • 0,388
  • 0,376
  • 0,376
  • 0,350
  • 0,334
  • 0,328
  • 0,303
  • 0,297
  • 0,297
  • 0,296
  • 0,296
  • 0,294
  • 0,288
  • 1/206256

Звезды являются самым распространенным типом небесных тел во Вселенной. Звезд до 6-й звездной величины насчитывается около 6000, до 11-й звездной величины примерно миллион, а до 21-й звездной величины их на всем небе около 2 млрд.

Все они, как и Солнце, являются горячими самосветящимися газовыми шарами, в недрах которых выделяется огромная энергия. Однако звезды даже в самые сильные телескопы видны как светящиеся точки, так как они находятся очень далеко от нас.

1. Годичный параллакс и расстояния до звезд

Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно обращается вокруг Солнца, то видимые положения звезд на небе должны меняться. За полгода Земля перемещается на величину диаметра своей орбиты. Направления на звезду с противоположных точек этой орбиты должны различаться. Иначе говоря, у звезд должен быть заметен годичный параллакс (рис. 72).

Годичным параллаксом звезды ρ называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), если она перпендикулярна лучу зрения.

Чем больше расстояние D до звезды, тем меньше ее параллакс. Параллактическое смещение положения звезды на небе в течение года происходит по маленькому эллипсу или кругу, если звезда находится в полюсе эклиптики (см. рис. 72).

Коперник пытался, но не смог обнаружить параллакс звезд. Он правильно утверждал, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было заметить их параллактическое смещение.

Впервые надежное измерение годичного параллакса звезды Веги удалось осуществить в 1837 г. русскому академику В. Я. Струве. Почти одновременно с ним в других странах определили параллаксы еще у двух звезд, одной из которых была α Центавра. Эта звезда, которая в СССР не видна, оказалась ближайшей к нам, ее годичный параллакс ρ= 0,75". Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Неудивительно, что так долго не могли заметить у звезд столь малые угловые смещения.

Расстояние до звезды где а - большая полуось земной орбиты. При малых углах если р выражено в секундах дуги. Тогда, приняв а = 1 а. е., получим:


Расстояние до ближайшей звезды α Центавра D=206 265" : 0,75" = 270 000 а. е. Свет проходит это расстояние за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны около 1 с.

Расстояние, которое свет проходит в течение года, называется световым годом . Эта единица используется для измерения расстояния наряду с парсеком (пк).

Парсек - расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1".

Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. Например, расстояние до звезды α Центавра равно 0,75" (3/4"), или 4/3 пк.

1 парсек = 3,26 светового года = 206 265 а. е. = 3*10 13 км.

В настоящее время измерение годичного параллакса является основным способом при определении расстояний до звезд. Параллаксы измерены уже для очень многих звезд.

Измерением годичного параллакса можно надежно установить расстояние до звезд, находящихся не далее 100 пк, или 300 световых лет.

Почему не удается точно измерить годичный параллакс более o далеких звезд?

Расстояние до более далеких звезд в настоящее время определяют другими методами (см. §25.1).

2. Видимая и абсолютная звездная величина

Светимость звезд. После того как астрономы получили возможность определять расстояния до звезд, было установлено, что звезды отличаются по видимой яркости не только из-за различия расстояния до них, но и вследствие различия их светимости .

Светимостью звезды L называется мощность излучения световой энергии по сравнению с мощностью излучения света Солнцем.

Если две звезды имеют одинаковую светимость, то звезда, которая находится дальше от нас, имеет меньшую видимую яркость. Сравнивать звезды по светимости можно лишь в том случае, если рассчитать их видимую яркость (звездную величину) для одного и того же стандартного расстояния. Таким расстоянием в астрономии принято считать 10 пк.

Видимая звездная величина, которую имела бы звезда, если бы находилась от нас на стандартном расстоянии D 0 =10 пк, получила название абсолютной звездной величины М.

Рассмотрим количественное соотношение видимой и абсолютной звездных величин звезды при известном расстоянии D до нее (или ее параллаксе р). Вспомним сначала, что разность в 5 звездных величин соответствует различию яркости ровно в 100 раз. Следовательно, разность видимых звездных величин двух источников равна единице, когда один из них ярче другого ровно в раз (эта величина примерно равна 2,512). Чем ярче источник, тем его видимая звездная величина считается меньшей. В общем случае отношение видимой яркости двух любых звезд I 1:I 2 связано с разностью их видимых звездных величин m 1 и m 2 простым соотношением:


Пусть m - видимая звездная величина звезды, находящейся на расстоянии D. Если бы она наблюдалась с расстояния D 0 = 10 пк, ее видимая звездная величина m 0 по определению была бы равна абсолютной звездной величине М. Тогда ее кажущаяся яркость изменилась бы в

В то же время известно, что кажущаяся яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

(2)

Следовательно,

(3)

Логарифмируя это выражение, находим:

(4)

где р выражено в секундах дуги.

Эти формулы дают абсолютную звездную величину М по известной видимой звездной величине m при реальном расстоянии до звезды D. Наше Солнце с расстояния 10 пк выглядело бы примерно как звезда 5-й видимой звездной величины, т. е. для Солнца М ≈5.

Зная абсолютную звездную величину М какой-нибудь звезды, легко вычислить ее светимость L. Принимая светимость Солнца L =1, по определению светимости можно записать, что

Величины М и L в разных единицах выражают мощность излучения звезды.

Исследование звезд показывает, что по светимости они могут отличаться в десятки миллиардов раз. В звездных величинах это различие достигает 26 единиц.

Абсолютные величины звезд очень высокой светимости отрицательны и достигают М =-9. Такие звезды называются гигантами и сверхгигантами. Излучение звезды S Золотой Рыбы мощнее излучения нашего Солнца в 500 000 раз, ее светимость L=500 000, наименьшую мощность излучения имеют карлики с М=+17 (L=0,000013).

Чтобы понять причины значительных различий в светимости звезд, необходимо рассмотреть и другие их характеристики, которые можно определить на основе анализа излучения.

3. Цвет, спектры и температура звезд

Во время наблюдений вы обратили внимание на то, что звезды имеют различный цвет, хорошо заметный у наиболее ярких из них. Цвет нагреваемого тела, в том числе и звезды, зависит от его температуры. Это дает возможность определить температуру звезд по распределению энергии в их непрерывном спектре.

Цвет и спектр звезд связаны с их температурой. В сравнительно холодных звездах преобладает излучение в красной области спектра, отчего они и имеют красноватый цвет. Температура красных звезд низкая. Она растет последовательно при переходе от красных звезд к оранжевым, затем к желтым, желтоватым, белым и голубоватым. Спектры звезд крайне разнообразны. Они разделены на классы, обозначаемые латинскими буквами и цифрами (см. задний форзац). В спектрах холодных красных звезд класса М с температурой около 3000 К видны полосы поглощения простейших двухатомных молекул, чаще всего оксида титана. В спектрах других красных звезд преобладают оксиды углерода или циркония. Красные звезды первой величины класса М - Антарес , Бетельгейзе .

В спектрах желтых звезд класса G , к которым относится и Солнце (с температурой 6000 К на поверхности), преобладают тонкие линии металлов: железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.

В спектрах белых звезд класса А , как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000 К.

В спектрах наиболее горячих, голубоватых звезд с температурой около 30 000 К видны линии нейтрального и ионизованного гелия.

Температуры большинства звезд заключены в пределах от 3000 до 30 000 К. У немногих звезд встречается температура около 100 000 К.

Таким образом, спектры звезд очень сильно отличаются друг от друга и по ним можно определить химический состав и температуру атмосфер звезд. Изучение спектров показало, что в атмосферах всех звезд преобладающими являются водород и гелий.

Различия звездных спектров объясняются не столько разнообразием их химического состава, сколько различием температуры и других физических условий в звездных атмосферах. При высокой температуре происходит разрушение молекул на атомы. При еще более высокой температуре разрушаются менее прочные атомы, они превращаются в ионы, теряя электроны. Ионизованные атомы многих химических элементов, как и нейтральные атомы, излучают и поглощают энергию определенных длин волн. Путем сравнения интенсивности линий поглощения атомов и ионов одного и того же химического элемента теоретически определяют их относительное количество. Оно является функцией температуры. Так, по темным линиям спектров звезд можно определить температуру их атмосфер.

У звезд одинаковой температуры и цвета, но разной светимости спектры в общем одинаковы, однако можно заметить различия в относительных интенсивностях некоторых линий. Это происходит от того, что при одинаковой температуре давление в их атмосферах различно. Например, в атмосферах звезд-гигантов давление меньше, они разреженнее. Если выразить эту зависимость графически, то по интенсивности линий можно найти абсолютную величину звезды, а далее по формуле (4) определить расстояние до нее.

Пример решения задачи

Задача. Какова светимость звезды ζ Скорпиона, если ее видимая звездная величина 3, а расстояние до нее 7500св. лет?


Упражнение 20

1. Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

2. Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин?

3. Параллакс Веги 0,11". Сколько времени свет от нее идет до Земли?

4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе?

5. Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий видимую звездную величину -1,6? Чему равны абсолютные величины этих звезд, если расстояние до обеих составляет 3 пк?

6. Назовите цвет каждой из звезд приложения IV по их спектральному классу.

Проксима Центавра.

Вот классический вопрос на засыпку. Спросите друзей, "Какая является ближайшей к нам? ", а затем смотрите, как они будут перечислять ближайшие звёзды . Может быть Сириус? Альфа что-то там? Бетельгейзе? Ответ очевиден - это ; массивный шар плазмы, расположенный примерно в 150 миллионах километров от Земли. Давайте уточним вопрос. Какая звезда самая близкая к Солнцу ?

Ближайшая звезда

Вы, наверное, слышали, что - третья по яркости звезда в небе на расстоянии всего 4,37 световых года от . Но Альфа Центавра не одиночная звезда, это система из трёх звёзд. Во-первых, двойная звезда (бинарная звезда) с общим центром гравитации и орбитальным периодом 80 лет. Альфа Центавра А лишь немного массивнее и ярче Солнца, а Альфа Центавра B чуть мене массивна, чем Солнце. Также в этой системе присутствует третий компонент, тусклый красный карлик Проксима Центавра (Proxima Centauri) .


Проксима Центавра - это и есть самая близкая звезда к нашему Солнцу , расположенная на расстоянии всего 4,24 световых года.

Проксима Центавра.

Кратная звёздная система Альфа Центавра расположена в созвездии Центавра, которое видно только в южном полушарии. К сожалению, даже если вы увидите эту систему, вы не сможете разглядеть Проксиму Центавра . Эта звезда настолько тусклая, что вам понадобится достаточно мощный телескоп, чтобы разглядеть её.

Давайте выясним масштаб того, насколько далека Проксима Центавра от нас. Подумайте о . движется со скоростью почти 60 000 км/ч, самый быстрый в . Этот путь он преодолел в 2015 году за 9 лет. Путешествуя с такой скоростью, чтобы добраться до Проксимы Центавра , "Новым Горизонтам" потребуется 78 000 световых лет.

Проксима Центавра - это ближайшая звезда на протяжении 32 000 световых лет, и она будет удерживать данный рекорд ещё 33 000 лет. Она совершит свой самый близкий подход к Солнцу примерно через 26700 лет, когда расстояние от этой звезды до Земли будет всего 3,11 световых года. Через 33 000 лет ближайшей звездой станет Ross 248 .

Что насчёт северного полушария?

Для тех из нас, кто живёт в северном полушарии, ближайшей видимой звездой является Звезда Барнарда , ещё один красный карлик в созвездии Змееносца (Ophiuchus). К сожалению, как и Проксима Центавра, Звезда Барнарда слишком тусклая, чтобы видеть её невооружённым глазом.


Звезда Барнарда.

Ближайшая звезда , которую вы сможете увидеть невооружённым глазом в северном полушарии - это Сириус (Альфа Большого Пса) . Сириус в два раза больше Солнца по размеру и по массе, и самая яркая звезда в небе. Расположенная в 8,6 световых лет от нас в созвездии Большого Пса (Canis Major) - это самая известная звезда, преследующая Орион на ночном небе зимой.

Как астрономы измерили расстояние до звёзд?

Они используют метод, называемый . Давайте проведём небольшой эксперимент. Держите одну руку вытянутой в длину и поместите свой палец так, чтобы рядом находился какой-то отдалённый объект. Теперь поочерёдно открывайте и закрывайте каждый глаз. Обратите внимание, кажется, что ваш палец прыгает туда и обратно, когда вы смотрите разными глазами. Это и есть метод параллакса.

Параллакс.

Чтобы измерить расстояние до звёзд, вы можете измерить угол до звезды по отношению к , когда Земля находится на одной стороне орбиты, скажем летом, затем через 6 месяцев, когда Земля передвинется на противоположную сторону орбиты, а затем измерить угол до звезды по сравнению с каким-нибудь отдалённым объектом. Если звезда близко к нам, данный угол можно будет измерить и вычислить расстояние.

Вы можете действительно можете измерить расстояние таким способом до ближайших звёзд , но этот метод работает только до 100"000 световых лет.

20 ближайших звёзд

Вот список из 20 ближайших звёздных систем и их расстояние до них в световых годах. Некоторые из них имеют несколько звёзд, но они часть одной и той же системы.

Звезда Расстояние, св. лет
Альфа Центавра (Alpha Centauri) 4,2
Звезда Барнарда (Barnard’s Star) 5,9
Вольф 359 (Wolf 359; CN Льва) 7,8
Лаланд 21185 (Lalande 21185) 8,3
Сириус (Sirius) 8,6
Лейтен 726-8 (Luyten 726-8) 8,7
Росс 154 (Ross 154) 9,7
Росс 248 (Ross 248 10,3
Эпсилон Эридана (Epsilon Eridani) 10,5
Лакайль 9352 (Lacaille 9352) 10,7
Росс 128 (Ross 128) 10,9
EZ Водолея (EZ Aquarii) 11,3
Процион (Procyon) 11,4
61 Лебедя (61 Cygni) 11,4
Струве 2398 (Struve 2398) 11,5
Грумбридж 34 (Groombridge 34) 11,6
Эпсилон Индейца (Epsilon Indi) 11,8
DX Рака (DX Cancri) 11,8
Тау Кита (Tau Ceti) 11,9
GJ 106 11,9

По данным NASA в радиусе 17 световых лет от Солнца существует 45 звёзд. В насчитывается более 200 миллиардов звёзд. Некоторые из них настолько тусклые, что их почти невозможно обнаружить. Возможно, с новыми технологиями учёные найдут звёзды ещё ближе к нам.

Название прочитанной вами статьи "Ближайшая звезда к Солнцу" .

Лучшие статьи по теме