Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Полы
  • Продольные и поперечные деформации. Деформации Определение продольной и поперечной деформации

Продольные и поперечные деформации. Деформации Определение продольной и поперечной деформации

Лекция №5

Тема: « Растяжение и сжатие »

Вопросы:

1. Нормальные напряжения при растяжении и сжатии

2. Определение продольной и поперечной деформации. Закон Гука

4. Температурные напряжения

5. Монтажные напряжения

1. Нормальные напряжения при растяжении и сжатии

Если на поверхность призматического стержня нанести сетку линий, параллельных и перпендикулярных оси стержня, и приложить к нему растягивающую силу, то можно убедиться в том, что линии сетки и после деформации останутся взаимно перпендикулярными (см. рис. 1).

Рис. 1

Все горизонтальные линии, например, cd переместятся вниз, оставаясь горизонтальными и прямыми. Можно предположить также, что и внутри стержня будет такая же картина, т.е. "поперечные сечения стержня, плоские и нормальные к его оси до деформации, останутся плоскими и нормальными к оси и после деформации". Эта важная гипотеза носит название гипотезы плоских сечений или гипотезы Бернулли. Формулы, полученные на основе этой гипотезы, подтверждаются результатами опытов.

Такая картина деформаций дает основание считать, что в поперечных сечениях действуют только нормальные напряжения, одинаковые во всех точках сечения, а касательные напряжения равны нулю. Если бы возникали касательные напряжения, то наблюдалась бы угловая деформация, и углы между продольными и поперечными линиями перестали бы быть прямыми. Если бы нормальные напряжения были не одинаковыми во всех точках сечения, го там, где напряжения выше, была бы и больше деформация, а следовательно, поперечные сечения не были бы плоскими и параллельными. Приняв гипотезу плоских сечений мы устанавливаем, что
.

Поскольку продольная сила является равнодействующей внутренних сил
, возникающих на бесконечно малых площадках (см. рис 3.2) ее можно представить в виде:

Рис. 2

Постоянные величины можно выносить за знак интеграла:

где А  площадь поперечного сечения.

Получаем формулу для нахождения нормальных напряженней при растяжении или сжатии:

(1)

Это одна из важнейших формул в сопротивлении материалов поэтому ее выделим в рамочки и также будем поступать в дальнейшем.

При растяжении положительно, при сжатии  отрицательно.

Если на брус действует только одна внешняя сила F , то

N = F ,

и напряжения можно определять по формуле:

2. Определение продольной и поперечной деформации

В упругой стадии работы большинства конструкционных материалов напряжения и деформации связаны прямой зависимостью, называемой законом Гука:

(2)

где Е  модуль продольной упругости или модуль Юнга, измеряется в МПа, характеризует жесткость материала, т.е. способность сопротивляться деформациям, его значения приведены в таблицax справочника;

 относительная продольная деформация, величина безразмерная, так как:

; (3)

 абсолютное удлинение стержня, м;

l  первоначальная длина, м.

Чем выше значение модуля продольной упругости Е, тем меньше деформация. Например, для стали Е=2,110 5 МПа, а для чугуна Е=(0,75…1,6)10 5 МПа, поэтому элемент конструкции из чугуна при одинаковых прочих условиях получит большую деформацию, чем со стали. Здесь не надо путать с тем, что доведенный до разрыва стержень из стали будет иметь значительно большую деформацию, чем чугунный. Речь идет не об предельной деформации, а об деформации в упругой стадии, т.е. без возникновения пластических деформаций, и при одинаковой нагрузке.

Преобразуем закон Гука, заменив из уравнения (3.3):

Подставим значение из формулы (1):

(4)

Мы получили формулу для абсолютного удлинения (укорочения) стержня. При растяжении
положительная, при сжатии  отрицательная. Произведение ЕА называют жесткостью бруса.

При растяжении стержень становится тоньше, при сжатии  толще. Изменение размеров поперечного сечения называется поперечной деформацией. Например, у прямоугольного сечения до нагружения были ширина b и высота сечения h , а после нагружения  b 1 и h 1 . Относительная поперечная деформация для ширины сечения:

для высоты сечения:

У изотропных материалов свойства одинаковы во всех направлениях. Поэтому:

При растяжении поперечная деформация отрицательна, при сжатии  положительна.

Отношение поперечной деформации к продольной называется коэффициентом поперечной деформации или коэффициентом Пуассона:

(5)

Экспериментально установлено, что в упругой стадии работы любого материала значение и постоянно. Оно лежит в пределах 00,5 и для конструкционных материалов дается в таблицах справочника.

Из зависимости (5) можно получить следующую формулу:

(6)

При растяжении (сжатии) поперечные сечения бруса перемещаются в продольном направлении. Перемещение является следствием деформации, но эти два понятия нужно четко разграничивать. Для стержня (см. рис. 3) определим величину деформации и построим эпюру перемещений.

Рис. 3

Как видно из рисунка отрезок стержня АВ не растягивается, но перемещение получит, так как удлинится отрезок СВ. Его удлинение равно:

Перемещения поперечных сечений обозначим через . В сечении С перемещение равно нулю. От сечения С до сечения В перемещение равно удлинению, т.е. возрастает пропорционально до
в сечении В. Для сечений от В до А перемещения одинаковы и равны
, так как этот отрезок стержня не деформируется.

3. Статически неопределимые задачи

Статически неопределимыми принято считать системы, усилия в которых нельзя определить с помощью только уравнений статики. Все статически неопределимые системы имеют "лишние" связи в виде дополнительных закреплений, стержней и других элементов. "Лишними" такие связи называют потому, что они не являются необходимыми с точки зрения обеспечения равновесия системы или ее геометрической неизменяемости, и их устройство преследует конструктивные или эксплуатационные цели.

Разность между количеством неизвестных и количеством независимых уравнений равновесия, которые можно составить для данной системы, характеризует число лишних неизвестных или степень статической неопределимости.

Статически неопределимые системы решают путем составления уравнений перемещения определенных точек, количество которых должно быть равно степени неопределимости системы.

Пусть на стержень, жестко заделанный обоими концами, действует сила F (см. рис. 4). Определим реакции опор.

Рис. 4

Реакции опор направим влево, так как сила F действует вправо. Поскольку вес силы действуют по одной линии можно составить лишь одно уравнение статического равновесия:

-B+F-C=0;

Итак, две неизвестные реакции опор В и С и одно уравнение статического равновесия. Система один раз статически неопределимая. Следовательно, для ее решения нужно составить одно дополнительное уравнение, основанное на перемещениях точки С. Мысленно отбросим правую опору. От силы F левая часть стержня ВД будет растягиваться и сечение С сместится вправо на величину этой деформации:

От реакции опоры С стержень будет сжиматься и сечение переместится влево на величину деформации всего стержня:

Опора не позволяет сечению С перемещаться ни влево, ни вправо, поэтому сумма перемещений от сил F и С должна равняться нулю:

|

Подставив значение С в уравнение статического равновесия, определим вторую реакцию опоры:

4. Температурные напряжения

В статически неопределимых системах при изменении температуры могут возникать напряжения. Пусть стержень, жестко заделанный с двух концов нагревается на температуру
град. (см. рис. 5).

Рис. 5

При нагревании тела расширяются, и стержень будет стремиться удлиниться на величину:

где  коэффициент линейного расширения,

l  первоначальная длина.

Опоры не дают возможности стержню удлиниться, поэтому стержень сжимается на величину:

Согласно формуле (4):

=
;

поскольку:

(7)

Как видно из формулы (7) температурные напряжения не зависят от длины стержня, а зависят лишь от коэффициента линейного расширения, модуля продольной упругости и изменения температуры.

Температурные напряжения могут достигать больших значений. Для их уменьшения в конструкциях предусматриваются специальные температурные зазоры (например, зазоры в стыках рельсов) или компенсационные устройства (например, колена в трубопроводах).

5. Монтажные напряжения

Элементы конструкции могут иметь отклонения в размерах при изготовлении (например, из-за сварки). При сборке размеры не совпадают (например, отверстия под болты), и прикладываются усилия, чтобы собрать узлы. В результате в элементах конструкции возникают внутренние усилия без приложения внешней нагрузки.

Пусть между двух жестких заделок вставлен стержень, длина которого на величину а больше расстояния между опорами (см. рис. 6). Стержень будет испытывать сжатие. Определим напряжения, используя формулу (4):

(8)

Рис. 6

Как видно из формулы (8) монтажные напряжения прямо пропорциональны погрешности в размерах а . Поэтому желательно иметь а=0 , особенно для стержней небольшой длины, так как обратно пропорционально длине.

Однако в статически неопределимых системах к монтажным напряжениям специально прибегают, чтобы повысить несущую способность конструкции.

План лекции

1. Деформации, закон Гука при центральном растяжении-сжатии стержней.

2. Механические характеристики материалов при центральном растяжении и сжатии.

Рассмотрим стержневой элемент конструкции в двух состояниях (см. рисунок 25):

Внешняя продольная сила F отсутствует, начальная длина стержня и его поперечный размер равны соответственно l и b , площадь сечения А одинакова по всей длине l (внешний контур стержня показан сплошными линиями);

Внешняя продольная растягивающая сила, направленная вдоль центральной оси, равна F , длина стержня получила приращение Δl , при этом его поперечный размер уменьшился на величину Δb (внешний контур стержня в деформированном положении показан пунктирными линиями).

l Δl

Рисунок 25. Продольно-поперечная деформация стержня при его центральном растяжении.

Приращение длины стержня Δl называется его абсолютной продольной деформацией, величина Δb – абсолютной поперечной деформацией. Величина Δl может трактоваться как продольное перемещение (вдоль оси z) концевого поперечного сечения стержня. Единицы измерения Δl и Δb те же, что и начальные размеры l и b (м, мм, см). В инженерных расчетах применяется следующее правило знаков для Δl : при растяжении участка стержня происходит увеличение его длины и величина Δl положительна; если же на участке стержня с начальной длиной l возникает внутренняя сжимающая сила N , то величина Δl отрицательна, т. к. происходит отрицательное приращение длины участка.

Если абсолютные деформации Δl и Δb отнести к начальным размерам l и b , то получим относительные деформации:


– относительная продольная деформация;

– относительная поперечная деформация.

Относительные деформации и являются безразмерными (как правило,

очень малыми) величинами, их именуют обычно е. о. д. – единицами относительных деформаций (например, ε = 5,24·10 -5 е. о. д.).

Абсолютное значение отношения относительной продольной деформации к относительной поперечной деформации является очень важной константой материала, называемой коэффициентом поперечной деформации или коэффициентом Пуассона (по фамилии французского ученого)

Как видно коэффициент Пуассона количественно характеризует соотношение между величинами относительной поперечной деформацией и относительной продольной деформацией материала стержня при приложении внешних сил вдоль одной оси. Значения коэффициента Пуассона определяются экспериментально и для различных материалов приводятся в справочниках. Для всех изотропных материалов значения лежит в пределах от 0 до 0,5 (для пробки близко к 0, для каучука и резины близко к 0,5). В частности, для прокатных сталей и алюминиевых сплавов в инженерных расчетах обычно принимается , для бетона .



Зная значение продольной деформации ε (например, в результате замеров при проведении экспериментов) и коэффициент Пуассона для конкретного материала (который можно взять из справочника) можно вычислить значение относительной поперечной деформации

где знак минус свидетельствует о том, что продольные и поперечные деформации всегда имеют противоположные алгебраические знаки (если стержень удлиняется на величину Δl растягивающей силой, то продольная деформация положительна, т. к. длина стержня получает положительное приращение, но при этом поперечный размер b уменьшается, т. е. получает отрицательное приращение Δb и поперечная деформация отрицательна; если же стержень будет сжиматься силой F , то, наоборот, продольная деформация станет отрицательной, а поперечная – положительной).

Внутренние усилия и деформации, возникающие в элементах конструкций под действием внешних нагрузок, представляют собой единый процесс, в котором все факторы взаимосвязаны между собой. Прежде всего, нас интересует взаимосвязь между внутренними усилиями и деформациями, в частности, при центральном растяжении-сжатии стержневых элементов конструкций. При этом, как и выше, будем руководствоваться принципом Сен-Венана: распределение внутренних усилий существенно зависит от способа приложения внешних сил к стержню лишь вблизи места нагружения (в частности, при приложении сил к стержню через малую площадку), а в частях, достаточно удаленных от мест


приложения сил распределение внутренних усилий зависит только от статического эквивалента этих сил, т. е. при действии растягивающих или сжимающих сосредоточенных сил будем считать, что в большей части объема стержня распределение внутренних сил будет равномерным (это подтверждается многочисленными экспериментами и опытом эксплуатации конструкций).

Английским ученым Робертом Гуком еще в 17-м веке была установлена прямая пропорциональная (линейная) зависимость (закон Гука) абсолютной продольной деформации Δl от растягивающей (или сжимающей) силы F . В 19-м веке английским ученым Томасом Юнгом сформулирована идея о том, что для каждого материала существует постоянная величина (названная им модулем упругости материала), характеризующая его способность сопротивляться деформированию при действии внешних сил. При этом Юнг первый указал на то, что линейный закон Гука справедлив только в определенной области деформирования материала, а именно – при упругих его деформациях .

В современном представлении применительно к одноосному центральному растяжению-сжатию стержней закон Гука используется в двух видах.

1) Нормальное напряжение в поперечном сечении стержня при центральном растяжении прямо пропорционально его относительной продольной деформации

, (1-й вид закона Гука),

где Е – модуль упругости материала при продольных деформациях, значения которого для различных материалов определены экспериментальным путем и занесены в справочники, которыми технические специалисты пользуются при проведении различных инженерных расчетов; так, для прокатных углеродистых сталей, широко применяемых в строительстве и машиностроении ; для алюминиевых сплавов ; для меди ; для других материалов значение Е всегда можно найти в справочниках (см., например, «Справочник по сопротивлению материалов» авторов Писаренко Г.С. и др.). Единицы измерения модуля упругости Е те же, что и единицы измерения нормальных напряжений, т. е. Па , МПа , Н/мм 2 и др.

2) Если в записанном выше 1-м виде закона Гука нормальное напряжение в сечении σ выразить через внутреннюю продольную силу N и площадь поперечного сечения стержня А , т. е. , а относительную продольную деформацию – через начальную длину стержня l и абсолютную продольную деформацию Δl , т. е. , то после простых преобразований получим формулу для практических расчетов (продольная деформация прямо пропорциональна внутренней продольной силе)

(2-й вид закона Гука). (18)

Из этой формулы следует, что с увеличением значения модуля упругости материала Е абсолютная продольная деформация стержня Δl уменьшается. Таким образом, сопротивляемость элементов конструкций деформациям (их жесткость) можно увеличить путем применения для них материалов с более высокими значениями модуля упругости Е . Среди широко применяемых в строительстве и машиностроении конструкционных материалов высоким значением модуля упругости Е обладают стали. Диапазон изменения величины Е для разных марок сталей небольшой: (1,92÷2,12)·10 5 МПа . У алюминиевых сплавов, например, величина Е примерно в три раза меньше, чем у сталей. Поэтому для


конструкций, к жесткости которых предъявляются повышенные требования, предпочтительными материалами являются стали.

Произведение называют параметром жесткости (или просто жесткостью) сечения стержня при его продольных деформациях (единицы измерения продольной жесткости сечения – Н , кН, МН ). Величина с = Е·А/l называется продольной жесткостью стержня длиной l (единицы измерения продольной жесткости стержня с Н/м , кН/м ).

Если стержень имеет несколько участков (n ) с переменной продольной жесткостью и сложной продольной нагрузкой (функция внутренней продольной силы от координаты z сечения стержня), то суммарная абсолютная продольная деформация стержня определится по более общей формуле

где интегрирование проводится в пределах каждого участка стержня длиной , а дискретное суммирование – по всем участкам стержня от i = 1 до i = n .

Закон Гука широко применяется в инженерных расчетах конструкций, поскольку большинство конструкционных материалов в процессе эксплуатации могут воспринимать весьма значительные напряжения, не разрушаясь в пределах упругих деформаций.

При неупругих (пластических или упруго-пластических) деформациях материала стержня прямое применение закона Гука неправомерно и, следовательно, вышеприведенные формулы использовать нельзя. В этих случаях следует применять другие расчетные зависимости, которые рассматриваются в специальных разделах курсов «Сопротивление материалов», «Строительная механика», «Механика твердого деформируемого тела», а также в курсе «Теория пластичности».

При действии растягивающих сил по оси бруса длина его увеличивается, а по­перечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате рас­тяжения брус удлинился на величину Δl , которая называется абсолютным удлинением, и получим абсолютное поперечное сужение Δа.

Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией . В данном случае относительная деформация называется продольной деформацией , а - относительной поперечной деформацией . Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона : (3.1)

Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .

В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:

, (3.2)

где Е - коэффициент пропорциональности, называемый модулем нормальной упругости .

Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах. Например, для пробки, для каучука, для стали, для золота.

Закон Гука
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).
Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
Если ввести относительное удлинение

И нормальное напряжение в поперечном сечении

То закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга
Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Модуль Юнга рассчитывается следующим образом:

Где:
E - модуль упругости,
F - сила,
S - площадь поверхности, по которой распределено действие силы,
l - длина деформируемого стержня,
x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

Где - плотность вещества.
Коэффициент Пуассона
Коэффициент Пуассона (обозначается как или) - абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец.
Уравнение
,
где
- коэффициент Пуассона;
- деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);
- продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

Рассмотрим прямой брус постоянного сечения длиной заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 8.2, а). Под действием силы Р брус удлиняется на некоторую величину которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. § 5.1) для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения к первоначальной длине бруса I, т. е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают .

Следовательно,

Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 8.2, а), а деформацию сжатия - отрицательной (рис. 8.2, б).

Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности (см. § 6.1, п. 4), опытом установлена следующая зависимость:

Здесь N - продольная сила в поперечных сечениях бруса; - площадь поперечного сечения бруса; Е - коэффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса получаем

Абсолютное удлинение бруса выражается формулой

т. е. абсолютная продольная деформация прямо пропорциональна продольной силе.

Впервые закон о прямой пропорциональности между силами и деформациями сформулировал (в 1660 г.). Формулы (10.2)-(13.2) являются математическими выражениями закона Гука при растяжении и сжатии бруса.

Более общей является следующая формулировка закона Гука [см. формулы (11.2) и (12.2)]: относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е, входящая в формулы (10.2)-(13.2), называется модулем упругости первого рода (сокращенно-модулем упругости) Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация.

Произведение назовем жесткостью поперечного сечения бруса при растяжении и сжатии.

В приложении I приведены значения модулей упругости Е для различных материалов.

Формулой (13.2) можно пользоваться для вычисления абсолютной продольной деформации участка бруса длиной лишь при условии, что сечение бруса в пределах этого участка постоянно и продольная сила N во всех поперечных сечениях одинакова.

Кроме продольной деформации, при действии на брус сжимающей или растягивающей силы наблюдается также поперечная деформация. При сжатии бруса поперечные размеры его увеличиваются, а при растяжении - уменьшаются. Если поперечный размер бруса до приложения к нему сжимаюших сил Р обозначить b, а после приложения этих сил (рис. 9.2), то величина будет обозначать абсолютную поперечную деформацию бруса.

Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости (см. § 6.1, п. 3), относительная поперечная деформация прямо пропорциональна относительной продольной деформации , но имеет обратный знак:

Коэффициент пропорциональности в формуле (14.2) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение относительной поперечной деформации к продольной, взятое по абсолютной величине, т. е.

Коэффициент Пуассона наряду с модулем упругости Е характеризует упругие свойства материала.

Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других металлов (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36. Ориентировочные значения коэффициента Пуассона для различных материалов приведены в приложении I.


Лучшие статьи по теме