Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Крыша
  • Кислотно основной гомеостаз. Кислотно-щелочное равновесие. Всегда ли организм может его поддерживать? Ацидоз или алкалоз, что лучше? Симптоматика и регулирование. Обзор исследований, взглядов и мнений, ученых и обывателей. Буферные системы организма

Кислотно основной гомеостаз. Кислотно-щелочное равновесие. Всегда ли организм может его поддерживать? Ацидоз или алкалоз, что лучше? Симптоматика и регулирование. Обзор исследований, взглядов и мнений, ученых и обывателей. Буферные системы организма

5167 0

Кислотно-основное состояние (КОС) — одни из весьма важных компонентов гомеостаза организма, непременное условие оптимальной активности ферментов-катализаторов обменных процессов. В процессе обмена веществ образуются различные кислоты и основания, кроме того они вводятся извне. Расстройства различных органов могут привести к нарушению КОС, что в свою очередь вызывает различные патологические сдвиги в организме. Показатели КОС в ряде случаев являются достаточно точным критерием эффективности ИТ. Поэтому необходимо знать механизмы физиологической регуляции и нарушений КОС, уметь оценить их состояние и правильно проводить профилактику и коррекцию нарушений.

Диагностика

Величины показателей КОС поддерживаются в узких границах физико-химическими реакциями и нейрогуморальными механизмами мощных систем:

  • буферных (гемоглобиновая, белковая, гидрокарбонатная и др.)
  • функциональных (легкие, почки, печень, желудочно-кишечный тракт).

При изменении pH сразу же реагируют буферные системы организма, затем функциональные. Максимальная компенсация последних более медленная (легких - окало 12-24 ч, почек - около недели). Поэтому для оценки КОС нужно знать качественные и количественные изменения прежде всего буферных систем (особенно гемоглобиновой, на долю которой приходится 73-76 % всей буферной емкости крови и гидрокарбонатной, очень подвижной и отражающей состояние других буферных систем). Основные показатели КОС: рНа - актуальный pH, BEа - избыток оснований, РаСО2 - напряжение СО2 в артериальной крови при температуре 38 °С без доступа воздуха.

Нормальные величины pHа у человека 7,36-7,44. Границы патологических отклонений, совместимых с жизнью 6,8-8,0. Уменьшение pH свидетельствует об ацидемии, а увеличение - алкалемии. Состояния, которые приводят к ним, называются ацидозом или алкалозом. pH отражает степень компенсации, но не сущность сдвигов КОС.

Нормальные величины ВЕа±2,3 ммоль/л. При патологии величина ВЕа может изменяться в пределах ±15 ммоль/л. ВЕа - это метаболический компонент КОС, снижение или увеличение его свидетельствует о метаболическом ацидозе или алкалозе соответственно. BE может изменяться также компенсаторно при дыхательных нарушениях.

Здравствуйте дорогие друзья!

Сегодня мне хочется еще раз заострить ваше внимание на главных причинах наших болезней. Большинство людей продолжают жить абсолютно неправильно, не взвешивая фактов и не вдумываясь в существо своего бытья. Они живут, как перекати поле, катясь по ветру жизни, разменивая дни, и годы своего существования на суету сует. Они не думают о завтрашнем дне, не пытаются не только как-то планировать и прогнозировать свое будущее, но и даже мечтать о нем. И конечно же на фоне такого существования, не остается места для своего здоровья. О нем такие люди просто не думают, зная что есть врачи и поликлиники, которые помогут.

Что можно сказать по этому поводу? Надейся говорят на бога, да сам плошай! Надежда в таком случае – абсолютно не правильный подход к собственной жизни. Наша медицина в таких случаях – это просто скорая помощь. И результат от такой помощи в лучшем случае может быть фифти-фифти. Никаких гарантий нет, что вы не умрете после первого звоночка. Шоферская идеология – куда дорога вывезет, совсем не для тех, кто намерился жить долго, интересно и счастливо.

Если вам не все равно когда вы отойдете в мир иной, или сколько лет до своей кончины вы будете мучатся со своими болячками, начните заниматься собой прямо сегодня. И я очень рад, если вы уже поняли как надо относиться к себе и своему здоровью и делайте все планомерно на протяжении медленно утекающего времени вашей жизни. Конечно же, речь идет прежде всего о ваших собственных действиях, направленных на создании своего счастливого будущего и сохранении здоровья на долгие, долгие годы.

Залогом здоровья является ваш обмен веществ – гомеостаз. И давайте сегодня поговорим о его звеньях, которые поддаются регулировке. Человек должен научится сам управлять своим здоровьем. И сегодня для этого есть все условия! Ну что же тронемся в путь? Самое главное, без лирики и отступлений. Понятно, что эта тема достойна отдельного издания, но я постараюсь в этой небольшой статье научить вас двигаться в правильном направлении в целях сохранения здоровья и оздоровления. Итак, поехали…

Основные, базовые химические процессы организма проявляются во взаимодействии кислоты и щелочи,
которые в меняющемся ритме протекают в человеческом организме. Человек с нормальным рН-уровнем крови 7,35 является щелочным живым существом.

Что такое вообще «уровень рН»?

Это важное измерительное число составляет основу кислотно-щелочного баланса, который имеет
решающее значение не только для природы, но и для основной регуляции человеческой жизни. Кислотно-щелочной баланс, регулирует дыхание, кровообращение, пищеварение, выделительные процессы, иммунитет,
выработку гормонов и многое другое. Почти все биологические процессы протекают правильно только тогда,
когда сохраняется определенный уровень рН.

Кислотно-щелочной баланс постоянно осуществляется в организме, во всех клетках организма. В каждой из этих клеток, в процессе их жизнедеятельности, при выработке энергии, постоянно образуется углекислота. При этом появляются и другие кислоты, которые попадают в организм и образуются в нем при поступлении пищи, вредных привычках, стрессах и переживаниях.
Существует шкала показателя рН, по которой можно определять, насколько кислым или щелочным
является любой раствор, в том числе любая физиологическая жидкость – кровь, слюна или моча.
Все мы знаем химическую формулу воды – Н2О. Кто еще не совсем забыл химию, помнят, что если мы рассмотрим структуру этой формулы,то увидим такую картину: Н-ОН, где Н – это положительно-заряженный ион, а группа ОН – это отрицательно-заряженный ион.

Таким образом мы видим в составе воды присутствует не не только “кислый” ион водорода, но и “щелочное” соединение атома водорода с атомом кислорода, которые создают устойчивую связь под названием «гидроксильная группа».
Таким образом, формула воды представлена двумя ионами, которые присутствуют тут в равном
количестве – один отрицательный и один положительный, в результате чего мы имеем химически
нейтральную субстанцию. Пункт 7 шкалы рН, как раз и является этим показателем нейтральности. То есть – это и есть показатель рН дистиллированной (чистой) воды.
Вообще же шкала рН делится от 0 до 14.
При показателе рН 0 – мы имеем дело с самой высокой концентрацией положительно заряженных ионов водорода и практически нулевой концентрацией отрицательных ионов ОН, в то время как при показателе рН14 ионы водорода почти не встречаются, а показатель ионов ОН достигает своего максимума.
Таким образом ниже показателя рН 7 преобладают простые катионы водорода (+ Н). Выше показателя рН 7 преобладают анионы гидроксильной группы (-ОН).
Чем ниже показатель рН от отметки 7 сторону 0, тем более кислотной является жидкость и наоборот, чем выше показатель рН от отметки 7 к отметке 14, тем больше проявление щелочности. Количество ионов водорода всегда определяет концентрацию или так называемый градус кислоты, т.е. чем больше простых ионов водорода, тем кислее жидкость. Поэтому и появилась аббревиатура рН, происходящая от латинского Potentia Hydrogenii, означающей «силу водорода». Выражаясь более понятным для обывателей языком,это просто показатель мощи (концентрации) кислоты. Сила кислотносты снижается от 1 к 7, и далее наступает вотчина щелочи.

В измерительной шкале уровня рН от 0 до 14. скрыта логарифмическая последовательность величин
Это означает, например, что величина рН 6 указывает силу кислоты в десять раз больше, чем величина рН 7, а рН 5 уже в сто раз больше, чем рН 7 ну а рН 4 уже в тысячу раз больше, чем рН7.
Основа же нашей жизни – наша кровь – имеет показатель рН от 7,35 до 7,45, то есть она слегка щелочная.
Кислоты и щелочи находятся в организме в очень тесной взаимосвязи.
Они должны находиться в равновесии, причем небольшой перевес должен быть на щелочной стороне, так как мы, люди, относимся к «щелочной касте царства природы».
Жизненная сила и здоровье человека зависит от регулярно выпиваемого достаточного количества качественной воды и щелочных соединений – минеральных веществ и микроэлементов, иначе нормальный рН-уровень крови не находился бы в указанном жизненном промежутке 7,35 – 7,45.

Эта зона может быть нарушена только незначительно, иначе может наступить критическое, угрожающее жизни состояние. Чтобы предотвратить сильное колебание этого показателя рН, обмен веществ человека располагает различными буферными системами. Одной из них – является буферная система гемоглобина. Она сразу снижается, если, например, наступает малокровие (анемия) или происходит нарушение микроциркуляции на уровне клетки, когда слипшиеся грозди эритроцитов не в состоянии проникнуть в капилляры и принести клеткам достаточное количество кислорода для нормализации энергетических обменных процессов в них и отведению от них углекислоты (СО2).

Причиной же образования сладжа (слипания) эритроцитов являются по существу 2 причины – хронический дефицит воды в организме (постоянное недопивание, жажда) и кислая пища, в том числе всевозможные напитки, несущие избыток положительно заряженных ионов, снимающих жизненно важный отрицательный потенциал с внешней стороны оболочки эритроцитов (нейтрализация заряда). Поскольку обменные процессы между внутренней и внешней средой в клетках происходят за счет разности электрических потенциалов (минус снаружи, плюс внутри), то агрессия положительно заряженных ионов резко снижает жизненные силы клеток (в частности эритроцитов, всех лейкоцитов и иных клеток). Свободно перемещающиеся в крови клетки, потеряв жизненную энергию начинаю т выпадать в осадок и кучковаться, образуя при этом огромные “сети”, среди которых “бездыханными” лежат лейкоциты, перестающие выполнять свои защитные (иммунные) функции.

Параллельно с этим ухудшается работа всех выделительных органов и систем. Нарастающий ацидоз, тормозится организмом с использованием второй буферной системы. Кислоты нейтрализуются щелочноземельными металлами и другими минералами. Калий, натрий, магний, кальций замещая водород в кислотах, образуют нейтральные соли. Образовавшиеся соли должны выводится через почки, но в результате переокисления крови, сладжа и нарушения микроциркуляции они не выводятся полностью и складируются внутри организма и прежде всего внутри соединительной, менее всего дифференцированной ткани, подверженной наибольшим разрушениям. Чем более закисленной становится кровь, тем меньше в ней солей может раствориться и соответственно тем большее их количество откладывается по всему организму.

На фоне гипоксии тканей, ацидоза и постоянной потери минералов, “активизируются” свободные радикалы. Организм не справляется самостоятельно с их “уничтожением” и они включив “ядерные реакции” распада клеток, наносят им непоправимый ущерб. Под электронным микроскопом у больных людей можно обнаружить огромное количество “покусанных” свободными радикалами эритроцитов, напоминащих собой часовые шестеренки. Количество таких эритроцитов может достигать до 50%. Понятно, что данная ситуация усугубляет общее состояние человека и доводит его до критического.

Основными составляющими звеньями обмена веществ (гомеостаза) являются – водный, электролитный и кислотно-щелочной баланс. У здорового человека они должны находится в биологическом равновесии. Все они имеют крайне важное значение для здоровья и жизни человека.

О водном балансе мной уже написано много материала на этом сайте и я не буду повторятся, скажу лишь что хроническое недопивание чистой воды (непроизвольное хроническое обезвоживание) является тем фоном на котором складываются обменные процессы. Именно хроническая жажда способствует нарастанию тканевого ацидоза, в купе с которым, алиментарное поступление кислотообразующей пищи, уничтожают необходимые для жизнедеятельности минералы и активируют свободные радикалы. По существу непроизвольное хроническое обезвоживание является пусковым моментом для появления всевозможной симптоматики, обусловленной сбоем в работе и 2 других звеньев гомеостаза.

Восстановление нарушенного обмена веществ невозможно без исправления основных его функций (звеньев). Для понятия предпосылок здоровья, понимание значения хорошей воды – первостепенно!

Именно качество и необходимый объем выпиваемой воды, обеспечивают нормальное протекание биохимических реакций. Качество же воды зависит от ее рН, окислительно-восстановительного потенциала (ОВП) и конечно же от ее жесткости и минерального состава. Я не хочу перечислять кучу негативных факторов делающих воду неприемлемой для питья, поскольку речь идет о фильтрованной, чистой родниковой или артезианской воде.

Поскольку в результате неправильного питания очень часто в организме образуется множество различных кислот, способных вызвать ожоги тканей (клеток), необходимо нейтрализовать их с помощью щелочного питья или свободных ионов минералов, поступающих с пищей или водой. К сожалению этого чаще всего не происходит и кислоты начинают “потрошить” ткани, вытаскивая из них минералы для замещения в кислотах водорода.

Образуются нейтральные соли и уровень кислотности крови снижается. В жесткой воде обычно бывает много солей кальция и магния, которые попадая в организм усугубляют состояние человека из-за итак высокой концентрации солей, образовавшихся в процессе нейтрализации кислот. Жесткая вода увеличивает количество шлаков, особенно у людей постоянно употребляющих кислотообразующую пищу. Остеопороз во многом является следствием потери кальция из-за высокой кислотности жидкостей организма. Вышедший из костей кальций активно нейтрализует кислоты, образуя соли и забивая при этом ими почки (мочекаменная болезнь) и одновременно, при разрыве своих молекулярных связей, дает телу дополнительную энергию.

Огромное значение для борьбы с ацидозом помимо правильного мышления в отношении своего питания и сокращения поступления в организм кислотообразующей пищи, имеет функциональное состояние почек и легких. Через почки выводится львиная доля всех растворенных в крови и отфильтрованных через них кислот и солей (метаболиты), а через легкие благодаря газообмену, выделяется летучие газообразные токсины, пока они еще не образовали ядовитые кислоты, в частности углекислый газ (по существу это уже практически готовая углекислота).

Неполноценная работа почек, легочная патология и смог в окружающей атмосфере, сами по себе вызывают ацидоз. Если к этому добавить все выше перечисленное, то становится понятным как тяжело приходится организму в противостоянии эндогенной кислотной угрозе, ускоренно сжигающей здоровье и жизнь конкретного человека.

Возникает своего рода замкнутый порочный круг, когда нарушение обменных процессов ведет к ацидозу, ацидоз бьет по органам выделения, постепенно ограничивая их функции, что в свою очередь усугубляет кислотные процессы в организме, продолжающие еще более жестко воздействовать на деятельность внутренних органов и систем. Все это способствует дальнейшему нарушению процессов обмена в живой клетке (нарушению выработки энзимов) и производству гормонов в железах внутренней секреции, что в свою очередь приводит к очень серьезным последствиям. Одно звено нарушений тащит за собой другое, и чтобы разорвать этот порочный круг, человек должен предпринять определенные усилия, чтобы сориентироваться в правильном направлении, начать действовать, не превращая при этом свою перестройку в краткосрочную акцию. Действия направленные на изменения ситуации в сторону здоровья должны быть разумными, системными и постоянными. Лишь так человек может выйти из сложного положения.

Чем дольше, к поврежденному в результате обезвоживания и ацидоза организму применяется симптоматическое лечение, тем быстрее задыхаются здоровые клетки и преждевременно погибают от непрерывно накапливающихся токсинов и шлаков. Любые медикаменты, назначаемые медиками или принимаемые на свой страх и риск только увеличивают гнёт клеток. А стресс и страхи болезни испытываемые такими людьми окончательно добивают их. Отсутствие энергии, слабость, лень и апатия приводят к депрессии. Синдром хронической усталости, выставляемый нам врачами как диагноз – есть следствие состояния хронического обезвоживания и ацидоза.

Выход здесь может быть только один. Разобраться в том что с вами происходит, внимательно изучив то о чем написано не только в этой статье но и в других материалах данного блога и начать претворять в жизнь простые, но жизненно необходимые рекомендации. Поймите меня правильно, мало кто из докторов может вас направить по правильному пути. В лучшем случае на фоне назначения медикаментов, вам могут порекомендовать пить воду, но и то не расскажут вам как это нужно делать.

Я знаю как можно решить основные составляющие звенья обмена веществ (гомеостаза). Водный, электролитный и кислотно-щелочной балансы можно легко регулировать с помощью портативных структуризаторов – щелочных энергетических стаканов – ионизаторов.

Вы сможете познакомиться с ними . Кстати к Дню Знаний я планирую беспрецендентную акцию, благодаря которой вы сможете получить структуризаторы по волшебной цене, вместе с подарками которые без всякого сомнения вас очень порадуют.

Кол-во товара в наличии небольшое, поэтому чтобы воспользоваться выгодной ситуацией я рекомендую записаться в предварительный список потенциальных заказчиков.

Позвоните мне по телефону, указанному на главной странице в правом верхнем углу данного сайта. Или зарегистрируйтесь письменно, нажав на картинку расположенную ниже. Вы будете первыми оповещены о начале акции.

Запись в предварительный список ни к чему вас не обязывает, вы просто сообщите мне о себе и ваших намерениях. Лишь после объявления акции, вы сможете сделать официальный заказ пройдя по специальным ссылкам.

Следите за рекламой о начале акции здесь на сайте

С наилучшими пожеланиями ваш Доктор БИС

PS: не теряйте дни, чтобы не потерять годы. Реальное поддержание и регулирование внутренней среды почти даром. Вы всегда сможете управлять своей внутренней средой даже не очень завися от питания. Не упускайте своего шанса получить структуризатор со скидкой и отличные подарки.

PPS: еще не разобрались что к чему? Подпишитесь на рассылку и получите серию писем и 4 книги по данной теме . Жизнь одна – берегите ее!

Понятие о кислотно-основном гомеостазе, его основные параметры. Роль стабилизации рН внутренней среды для организма. Функциональная система поддержания постоянства параметров кислотно-основного гомеостаза. Значение поддержания постоянства рН в жизнедеятельности. Роль внешнего дыхания, почек и буферных систем крови в стабилизации рН.

Понятие рН, роль постоянства рН внутренней среды для осуществления внутриклеточного метаболизма.

Кислотно-щелочной гомеостаз

Кислотно-щелочное равновесие является одним из важнейших физико-химических параметров внутренней среды организма. От соотношения водородных и гидроксильных ионов во внутренней среде организма в значительной мере зависят активность ферментов, направленность и интенсивность окислительно- восстановительных реакций, процессы расщепления и синтеза белка, гликолиз и окисление углеводов и жиров, функции ряда органов, чувствительность рецепторов к медиаторам, проницаемость мембран и т. д. Активность реакции среды определяет способность гемоглобина связывать кислород и отдавать его тканям. При изменении реакции среды меняются физико-химические характеристики коллоидов клеток и межклеточных структур - степень их дисперсности, гидрофилии, способность к адсорбции и другие важные свойства.

Соотношение активных масс водородных и гидроксильных ионов в биологических средах зависит от содержания в жидкостях организма кислот (донаторов протонов) и буферных оснований (акцепторы протонов). Принято активную реакцию среды оценивать по одному из ионов (Н +) или (ОН -), чаще по иону Н + . Содержание в организме Н + определяется, с одной стороны, прямым или опосредованным через углекислоту образованием их в ходе обмена белков, жиров и углеводов, а с другой - поступлением их в организм или выведением из него в виде нелетучих кислот или углекислого газа. Даже относительно небольшие изменения СН + неизбежно ведут к нарушению физиологических процессов, а при сдвигах за известные пределы - и к гибели организма. В связи с этим величина pH, характеризующая состояние кислотно-щелочного равновесия, является одним из самых "жестких" параметров крови и колеблется у человека в узких пределах - от 7,32 до 7,45. Сдвиг pH на 0,1 за указанные границы обусловливает выраженные нарушения со стороны дыхания, сердечно- сосудистой системы и др.; снижение pH на 0,3 вызывает ацидотическую кому, а сдвиг pH на 0,4 зачастую несовместим с жизнью.

Обмен кислот и оснований в организме теснейшим образом связан с обменом воды и электролитов. Все эти виды обмена объединены законами электронейтральности, изоосмолярности и гоместатическими физиологическими механизмами. Для плазмы закон электронейтральности может быть проиллюстрирован данными табл. 20.

Общее количество катионов плазмы составляет 155 ммоль/л, из них 142 ммоль/л приходятся на долю натрия. Общее количество анионов также составляет 155 ммоль/л, из них 103 ммоль/л приходятся на долю слабого основания С1 - и 27 ммоль/л - на долю HCO - 3 (сильное основание). Г. Рут (1978) считает, что HCO - 3 и анионы белка (примерно 42 ммоль/л) составляют главные буферные основания плазмы. Ввиду того, что концентрация ионов водорода в плазме составляет всего 40·10 -6 ммоль/л, кровь является хорошо буферированным раствором и обладает слабощелочной реакцией. Анионы белка, особенно ион НСО - 3 тесно связаны, с одной стороны, с обменом электролитов, с другой - с кислотно-щелочным равновесием, поэтому правильная трактовка изменений их концентрации имеет важное значение для понимания процессов, происходящих в сфере обмена электролитов, воды и Н + .

  • 1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
  • 2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода.
  • 4. Индикан мочи,значение исследования.
  • 1. Нуклеопротеины. Современные представления о структуре и функциях нуклеиновых кислот. Продукты их гидролиза.
  • 2.Тканевое дыхание. Последовательность расположения ферментных комплексов. Характеристика f- цикла. Образование атф.
  • 3.Витамин в6. Химическая природа, распространение, участие в обменных процессах.
  • 4.Парные соединения мочи.
  • 1.Взаимосвязь между обменами. Роль ключевых метаболитов: глюкозо-6 фосфата, пировиноградной кислоты, ацетил –КоА.
  • 2. Переваривание и всасывание у в жкт. Возрастные особенности. Судьба всосавшихся моносахаридов.
  • 4. Возрастные особенности желуд сока.
  • 1.Атф и другие высокоэнергетические соединения. Способы образования атф в организме. Биологическая роль
  • 2.Биосинтез и мобилизация гликогена, последовательность реакций. Биологическая роль гликогена мышц и печени. Регуляция активности фосфорилазы и гликогенсинтазы
  • 4. Азотсодержащие вещества мочи. Возрастные особенности.
  • 2.Буферные системы крови. Роль буферных систем в поддержании гомеостаза pH. Кислотно-основное состояние. Понятие об ацидозе и алкалозе.
  • 3. Кофакторы и их связь с витаминами. Типичные примеры.
  • 4.Содержание и формы билирубина в крови. Диагностическое значение форм билирубина.
  • 1.Денатурация белков. Факторы и признаки денатурации. Изменение конфигурации белковых молекул. Физико-химические свойства денатурированных белков
  • 3.Гемоглобин, строение и свойства. Возрастные особенности. Понятие об аномальных гемоглобинах.
  • 4.Электрофорез белков сыворотки крови.
  • 2.Буферные системы крови. Роль буферных систем в поддержании гомеостаза pH. Кислотно-основное состояние. Понятие об ацидозе и алкалозе.

    В организме кислотообразование преобл.над образованием соед-й основного характера.

    Источники Н+ в организме:

    1.летучая кислота Н2СО3, в сутки образ.10-20тыс.ммоль СО2 при окислении белков, Ж, У.

    2.нелетучие кислоты в сут.образ. 70 ммоль:

    Фосфорная при расщепл.орг.фосфатов(нуклеотидов, ФЛ, фосфопротеидов)

    Серная, соляная при окислении Б

    3.орг.к-ты:молочная, кетоновые тела, ПВК и др.

    рН удерживается на слабощелочном уровне благодаря участию буф.с-м и физиологическому контролю(выделит.ф.почек и дыхат.ф.легких)

    Уравнение Гендерсона-Хессельбаха: pH = pKa + lg [акц.протонов]/[донор протонов].

    (Соль) (кислота)

    Любая буф.с-ма состоит из сопряженной кислотно-основной пары: донор+акцептор протонов.

    Буферная емкость: зависит от абсолютных концентраций компонентов буфера.

      Бикарбонатная.

    10%буф.емкости крови.

    При нормальном значении рН крови (7,4) концентрация ионов бикарбоната НСО 3 в плазме крови превышает концентрацию СО 2 примерно в 20 раз. Бикарбонатная буферная система функционирует как эффективный регулятор в области рН 7,4.

    Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н + взаимодействуют с ионами бикарбоната НСО 3 – , что приводит к образованию слабодиссоциирующей угольной кислоты Н 2 СО 3 . Последующее снижение концентрации Н 2 СО 3 достигается в результате ускоренного выделения СО 2 через легкие в результате их гипервентиляции (напомним, что концентрация Н 2 СО 3 в плазме крови определяется давлением СО 2 в альвеолярной газовой смеси).

    Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната иводу. При этом не происходит сколько-нибудь заметных сдвигов в величине рН. Кроме того, для сохранения нормального соотношения между компонентами буферной системы в этом случае подключаются физиологические механизмы регуляции кислотно-основногоравновесия: происходит задержка в плазме крови некоторого количества СО 2 в результате гиповентиляции легких.

    NaHCO3 + H+ → Na+ + H2CO3

    Реабс.в почках ↓карбоангидраза

    ↓увеличение вентиляции легких

      Фосфатная представляет собой сопряженную кислотно-основную пару, состоящую из иона Н 2 РО 4 – (донорпротонов) и иона НРО 4 2– (акцептор протонов):

    Фосфатная буферная система составляет всего лишь 1% от буферной емкости крови. Во внеклеточной жидкости, в том числе в крови, соотношение [НРО 4 2– ]: [Н 2 РО 4 – ] составляет 4:1. Буферное действие фосфатной системы основано на возможности связывания водородных ионов ионами НРО 4 2– с образованием Н 2 РО 4 – (Н + + + НРО 4 2– -> Н 2 РО 4 –), а также ионов ОН – с ионами Н 2 РО 4 – (ОН – + + Н 2 Р О 4 – -> HPO 4 2– + H 2 O). Буферная пара (Н 2 РО 4 – –НРО 4 2–) способна оказывать влияние при изменениях рН в интервале от 6,1 до 7,7 и может обеспечивать определенную буферную емкость внутриклеточной жидкости, величина рН которой в пределах 6,9–7,4. В крови максимальная емкость фосфатного буфера проявляется вблизи значения рН 7,2.

    1 и 2 – выводящие.

      Белковая имеет меньшее значение для поддержания КОР в плазме крови, чем другие буферные системы. Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков: белок–Н + (кислота, донорпротонов) и белок (сопряженное основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2–7,4.

      Гемоглобиновая буферная система – самая мощная буферная система крови. Она в 9 раз мощнее бикарбонатного буфера; на ее долю приходится 75% от всей буферной емкости крови. состоит из неионизированного гемоглобина ННb (слабая органическая кислота, донорпротонов) и калиевой соли гемоглобина КНb (сопряженное основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются вза-имопревращающимися системами и существуют как единое целое.

    Механизм действия:

    В тканях: Н2О + СО2(карбоангидраза) ->Н2СО3->Н+ + НСО3-(диффундирует в плазму крови)

    КНвО2 ->КНв + 4О2

    КНв + 2Н+ -> ННв + 2К+ (К-гемоглобин неитрализует ионы Н+)

    В легких: ННв + 4О2 ->2Н+ + НвО2

    2Н+ + НвО2 + 2К+ + 2НСО3- ->КНвО2 + 2Н2СО3(карбоангидраза) ->Н2О + 2СО2

    рН и концентрация СО2 влияют на освобождение и связывание О2 немоглобином – эфф.Бора.

    Повышение концентрации протонов, СО2, способствует освобождению О2, а повышение концентрации О2 стимулирует высвобождение СО2 и протонов.

    КИСЛОТНО-ЩЕЛОЧНОЕ РАВНОВЕСИЕ (син.: кислотно-основное равновесие, кислотно-щелочной баланс, кислотно-щелочное состояние ) - относительное постоянство водородного показателя (pH) внутренней среды организма, обусловленное совместным действием буферных и некоторых физиологических систем, определяющее полноценность метаболических превращений в клетках организма. Изменение показателя К.-щ. р. и ряда связанных с ним величин (напр., щелочного резерва) свидетельствует о нарушениях газового обмена и метаболических процессов в организме и о степени их тяжести.

    Жизнедеятельность организма прежде всего связана с процессами тканевого дыхания, для обеспечения которых необходимо поступление достаточного количества кислорода и выведение избытка углекислого газа, образующегося в результате многочисленных реакций межуточного обмена. Транспорт кислорода и углекислого газа осуществляется кровью, к-рая представляет собой одну из важнейших внутренних сред организма, К.-щ. р. к-рой изучено наиболее детально. Наряду с к-тами (донорами протонов - водородных ионов) в крови содержатся также основания (акцепторы протонов), соотношение концентраций которых определяет активную реакцию крови. Количественно активная реакция жидкостей организма характеризуется или концентрацией водородных ионов (протонов), выраженной в моль/л, или водородным показателем - отрицательным десятичным логарифмом этой концентрации - pH (power Hydrogen - «сила водорода»). Соотношение между концентрациями к-т и оснований может меняться в зависимости от интенсивности тех или иных процессов обмена веществ в организме, однако норме соответствует лишь определенный диапазон колебаний pH крови - от 7,37 до 7,44 со средней величиной 7,38-7,40. Величины pH ниже 6,8 и выше 7,8 несовместимы с жизнью. В эритроцитах величина pH равна 7,19 ± 0,02. Несмотря на то, что колебания нормальной величины pH кажутся очень небольшими, на самом деле они составляют ок. 12% их средней концентрации. Более значительные изменения величины pH крови в сторону повышения или понижения связаны с патол, нарушениями обмена. Зависимость организма от постоянства активной реакции внутренней среды свидетельствует о его потребности в достаточно эффективных системах поддержания относительного постоянства концентрации водородных ионов в организме, в частности относительного постоянства pH крови.

    Таких систем в организме человека три - это комплекс буферных систем (см.), способных быть акцепторами р донорами водородных ионов без существенных сдвигов величины pH среды; дыхательная система (легкие) и выделительная система (почки).

    Буферные системы организма

    Наиболее важной буферной системой организма является бикарбонатная буферная система крови, состоящая из угольной к-ты (H 2 CO 3) и ее соли - бикарбоната натрия (NaHCO 3) или калия (KHCO 3), имеющих общий ион HCO 3 - . Большая часть этих ионов высвобождается при диссоциации бикарбонатов и подавляет диссоциацию слабой и непрочной к-ты H 2 CO 3 , к-рая в р-рах легко распадается на воду и углекислый газ. Поэтому в водных р-рах угольной к-ты имеет место следующее равновесие: CO 2 + H 2 O <-> H 2 CO <-> H + + HCO 3 - . Величину pH в р-ре можно выразить через константу диссоциации углекислоты (pKH 2 CO 3) и концентрацию ионов и молекул недиссоциированной . Эта формула известна как уравнение Гендерсона-Гассельбальха:

    Квадратными скобками обозначаются равновесные концентрации ионов и не диссоциированной молекулы. Т. к. истинная концентрация недиссоциированных молекул H 2 CO 3 в крови незначительна и находится в прямой зависимости от концентрации растворенного углекислого газа - CO 2 , то удобнее пользоваться тем вариантом уравнения, в к-ром pKH 2 CO 3 заменена кажущейся константой диссоциации H 2 CO 2 , учитывающей общую концентрацию растворенного CO 2 в крови. Тогда вместо концентрации в уравнение может быть подставлено pCO 2 - парциальное давление CO 2 в альвеолярном воздухе:

    где L - коэффициент растворимости CO 2 в плазме крови, а 6,10 - величина, постоянная для крови человека при 38°. Механизм действия этой буферной системы заключается в том, что при поступлении в кровь относительно больших количеств к-т водородные ионы - H + к-т соединяются с ионами бикарбоната - HCO 3 - , образуя слабодиссоциирующую угольную к-ту - H 2 CO 3 . Если же в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной к-той, образуют воду и ионы бикарбоната. При этом не происходит сколько-нибудь заметных сдвигов в величине pH. Таков же механизм и другой буферной системы крови - фосфатной. Роль к-ты в этой системе играют однозамещенный фосфат - NaH 2 PO4, а роль соли - двузамещенный фосфат Na 2 HPO 4 . Общим ионом в этой системе является ион HPO 4 - . Буферная емкость этой системы меньше, т. к. и фосфатов в крови меньше, чем бикарбонатов.

    Наиболее мощной буферной системой крови являются белки, особенно гемоглобин (см.). Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения кислородом. При насыщении гемоглобина кислородом он становится более сильной к-той и увеличивает поступление в кровь ионов водорода; отдавая кислород, гемоглобин становится более слабой к-той, его способность связывать ионы водорода увеличивается. В периферических капиллярах большого круга кровообращения гемоглобин эритроцитов отдает кислород, а в эритроциты поступает продукт тканевого обмена - углекислый газ (CO 2). Под влиянием карбоангидразы (см.) углекислый газ взаимодействует с водой, образуя угольную к-ту (H 2 CO 3). Возникающий за счет диссоциации угольной к-ты избыток ионов водорода связывается гемоглобином, отдавшим кислород, а анионы HCO 3 - выходят из эритроцитов в плазму. В обмен на эти анионы в эритроциты поступают ионы хлора (Cl -), для к-рого мембрана эритроцита проницаема, в то время как ион натрия (Na +), вторая составная NaCl, остается в жидкой части крови. Благодаря выходу бикарбонатных ионов из эритроцитов восстанавливается щелочной резерв крови, т. о. бикарбонатная буферная система тесно связана с буферной системой эритроцитов.

    Дыхательная система

    В капиллярах легких происходит разгрузка буферных систем крови от кислых эквивалентов за счет выделения углекислого газа. Этому в значительной степени способствует переход гемоглобина в оксигемоглобин, который благодаря своим более сильным кислотным свойствам вытесняет угольную к-ту из бикарбонатов крови. Углекислый газ выделяется с выдыхаемым воздухом (см. Газообмен).

    Хотя дыхательная система (легкие) значительно влияет на К.-щ. р., однако легким требуется ок. 1-3 мин., чтобы нивелировать сдвиг К.-щ. р. в крови, тогда как буферным системам крови для этого нужно всего лишь 30 сек. Однако значение легочного механизма состоит в том, что, выделяя в окружающую среду углекислый газ, легкие быстро ликвидируют опасность ацидоза (см.).

    Почечный диурез

    Третьим механизмом, участвующим в регуляции постоянства концентрации водородных ионов в крови, является почечный диурез. Почки обеспечивают повышение или понижение концентрации бикарбонатов в крови при соответствующих изменениях величины pH. Почки действуют медленнее, чем легкие: для того чтобы ликвидировать сдвиг pH в крови, им необходимо 10-20 час. Основным механизмом поддержания постоянной концентрации водородных ионов со стороны почек является реабсорбция ионов натрия и секреция ионов водорода в почечных канальцах. В клетках почечных канальцев из угольной к-ты образуется бикарбонат, в результате чего щелочной резерв крови увеличивается. В просвете канальцев, наоборот, бикарбонаты превращаются в угольную к-ту. В клетках канальцев углекислый газ под влиянием карбоангидразы соединяется с водой, образуя угольную к-ту, водородные ионы к-рой выделяются в просвет канальца и соединяются там с ионами бикарбоната. При этом в клетки почечных канальцев поступает эквивалентное количество катионов Na+. Образовавшаяся в просвете канальца H 2 CO 3 легко распадается на CO 2 и H 2 O и в таком виде выводится из организма. Этот процесс способствует, кроме выведения излишка ионов H + , сбережению ионов натрия в организме. Сбережению натрия в организме способствует также образование в почках аммиака в результате окислительного дезаминирования аминокислот, гл. обр. глутаминовой (см. Дезаминирование). Аммиак вместо других катионов используется в почках для нейтрализации и выведения из организма с мочой к-т. Соотношение между концентрацией ионов H + в моче и крови может составить 800: 1, так велика способность почек к выводу ионов H + из организма.

    Скорость секреции ионов H + , обмениваемых на ионы Na + или NH 4 + , в определенной мере зависит от концентрации углекислоты во внеклеточной жидкости, т. е. в канальцах почек тесно переплетаются механизмы водно-солевого обмена (см.) и К.-щ. р. По существу, это две стороны одного и того же процесса: интенсивность задержки в организме ионов натрия стимулируется повышением pH крови, а уменьшение pH крови ограничивает процесс реабсорбции ионов натрия в почечном канальцевом аппарате.

    Определение показателей кислотно-щелочного равновесия в клинике

    К.-щ. р. является одним из важнейших показателей гомеостаза (см.). Оно оценивается на основании величины pH, парциального давления (напряжения) углекислого газа (pCO 2), концентрации истинных (актуальных) и стандартных бикарбонатов крови (SB), концентрации буферных оснований - BB (англ. buffer base), избытка оснований в цельной крови - BE (англ. bases excess).

    Величина pH крови определяется электрометрическим (потенциометрическим) методом с использованием pH-метров (см. Водородный показатель). В клинике определяют два значения pH крови: pH истинный (актуальный) представляет собой показатель pH цельной крови или плазмы, pH метаболический обозначает величину pH крови или плазмы после соотнесения ее с величиной pCO 2 . У здоровых лиц величины истинного и метаболического pH равны. При метаболическом ацидозе величина pH метаболического ниже величины pH истинного. При респираторном ацидозе показатель pH метаболического выше показателя pH истинного. При метаболическом алкалозе величина pH метаболического выше величины pH истинного, а при респираторном, наоборот, ниже. Другим показателем, характеризующим К.-щ. р., является парциальное давление углекислого газа (pCO 2), т. е. его давление над кровью, при к-ром произошло растворение CO 2 в крови. Количество растворенного CO 2 вычисляют по уравнению P = L*pCO 2 , где P - количество растворенного CO 2 в мМ/л, L - коэффициент растворимости для углекислого газа (так наз. коэффициент Бора), pCO 2 - парциальное давление углекислого газа в мм рт. ст. Величина L в крови при температуре 38° равна 0,0301 мМ/л. Поэтому при pCO 2 , равном 40 мм рт. ст., P - 0,0301*40 = 1,2 мМ/л. Если количество растворенного CO 2 выражено в объемных процентах, то для перевода этого показателя в мМ/л пользуются формулой

    1 мМ/л CO 2 равен 2,226 об.% CO 2 . В крови углекислота существует в виде CO 2 , H 2 CO 3 и бикарбонатного иона HCO 3 - . Отношение

    Поскольку количество растворенного CO 2 составляет 1,2 мМ/л, то количество H 2 CO 3 при оценке состояния К.-щ. р. в клин, практике практически теряет свое значение. Величина pCO 2 у здоровых лиц в покое колеблется в пределах 35,8-46,6 мм рт. ст., в среднем составляя 40 мм рт. ст. При патологии значение pCO 2 колеблется в пределах 10-130 мм рт. ст. При вентиляционной недостаточности pCO 2 нередко повышается до 140-150 мм рт. ст. Повышение pCO 2 наблюдается при респираторных ацидозах и метаболических алкалозах, тогда как снижение его происходит при респираторных алкалозах и метаболических ацидозах (см. Алкалоз , Ацидоз). При респираторных ацидозах повышение значения pCO 2 служит показателем недостаточности альвеолярной вентиляции. В этом случае увеличение pCO 2 является причиной возникновения респираторного ацидоза. При метаболическом же алкалозе повышение pCO 2 является компенсаторным фактором: углекислота, накапливаясь в крови, нейтрализует в ней избыток нелетучих оснований.

    При респираторных алкалозах уменьшение pCO 2 возникает в результате гипервентиляции, к-рая приводит к избыточному выведению углекислоты из организма и развитию респираторного алкалоза. При метаболических ацидозах снижение pCO 2 также возникает в результате гипервентиляции, но, в отличие от респираторных алкалозов, избыточное выведение углекислоты в этом случае компенсаторно направлено на уменьшение ацидоза.

    В клин, оценке pCO 2 необходимо определить не только его величину, но и выяснить физиол, смысл имеющихся сдвигов, в частности, необходимо решить, являются сдвиги этого показателя причинными или компенсаторными. При респираторном алкалозе повышение величины pH крови сочетается с понижением pCO 2 , а при метаболическом - с увеличением pCO 2 . При респираторном ацидозе уменьшение величины pH сопровождается повышением pCO 2 , а при метаболическом ацидозе, наоборот, его понижением.

    Третьим показателем, характеризующим К.-щ. р., является количество истинных (актуальных) и стандартных бикарбонатов крови. Всякое изменение pCO 2 значительно отражается на поглощении углекислого газа кровью. Зависимость содержания CO 2 в крови от pCO 2 выражается кривой связывания углекислоты. Эти кривые связывания углекислоты графически изображаются следующим образом: pCO 2 откладывается по оси абсцисс, а количество объемных процентов углекислоты в крови - по оси ординат. Кривая связывания углекислоты является показателем величины щелочного резерва крови. Щелочной резерв крови представляет собой то количество CO 2 , к-рое способна связывать плазма крови при pCO 2 , равном 40 мм рт. ст. Эта величина аналогична величине стандартного бикарбоната (в мэкв/л) при условии полного насыщения гемоглобина крови кислородом (оксигемоглобин = 100%) при температуре 38°. Истинные бикарбонаты крови представляют концентрацию анионов HCOO 3 - (в мэкв/л) в физиол, условиях. У здоровых лиц количество истинных и стандартных бикарбонатов равно и составляет ок. 27 мэкв/л или 60 об.% с колебаниями 23-33 мэкв/л или соответственно 52- 73 об.%. У детей эти показатели ниже и составляют соответственно 21-27 мэкв/л или 47-60 об.%. Концентрация бикарбонатов крови существенно увеличивается при метаболическом алкалозе и в меньшей степени при респираторном ацидозе. Снижение концентрации бикарбонатов наблюдается при метаболическом ацидозе и респираторном алкалозе. Диагностическое значение концентрации бикарбонатов крови состоит прежде всего в установлении респираторного или метаболического характера нарушений К.-щ. р. Этот показатель существенно меняется при метаболических сдвигах и незначительно при респираторных.

    Определение концентрации как истинных, так и стандартных бикарбонатов крови производится с помощью номограмм, построенных на основе уравнения Гендерсона - Гассельбальха, наилучшей из которых является номограмма Сиггор-Андерсена.

    Для оценки К.-щ. р. существует еще один показатель - концентрация буферных оснований - ВВ. Количество В В у здоровых лиц в покое составляет 44,4 мэкв/л. В В состоит гл. обр. из бикарбонатных анионов и анионов белка. Изменение величины В В отражает степень метаболических сдвигов. При метаболических расстройствах уровень ВВ резко нарушается, тогда как при респираторных нарушениях сдвиги В В незначительны. Поскольку колебания величины ВВ и у здоровых лиц весьма значительны, диагностическая ценность этого показателя невелика. Зачастую нельзя дифференцировать характер нарушения К.-щ. р. (метаболический или респираторный). Величина ВВ в стандартных условиях (pH 7,38; pCO 2 40 мм рт. ст.; -38°) носит название нормальных буферных оснований (NBB). Показателем, характеризующим К.-щ. р., является также избыток буферных оснований - ВЕ. Этот показатель отражает смещение титруемых буферных оснований по отношению к NBB. Определение ВЕ может быть осуществлено методом титрования крови при фактических условиях и после приведения ее к стандартным условиям. Эта методика очень трудоемка. На практике ВЕ определяется по номограмме Сиггор-Андерсена. Если ВЕ снижен, то показатель приобретает отрицательный знак, при повышении - положительный. В покое у здоровых лиц ВЕ колеблется от -2,4 до + 2,3 мэкв/л. При патологии значения этого показателя колеблются в пределах +30-30 мэкв/л. Положительное значение ВЕ указывает на недостаток нелетучих к-т или избыток оснований, а отрицательное значение показателя - на избыток нелетучих к-т или дефицит оснований. Наибольшие сдвиги ВЕ наблюдаются при метаболических нарушениях К.-щ. р. При метаболическом ацидозе показатель ВЕ имеет отрицательный знак (дефицит буферных оснований), а при метаболическом алкалозе отмечается избыток буферных оснований, и величина ВЕ имеет положительный знак. При респираторных сдвигах ВЕ изменяется незначительно: при ацидозе он повышен, а при алкалозе - снижен.

    Показатель ВЕ близок по значению к показателю истинных и стандартных бикарбонатов. Различие состоит в том, что ВЕ отражает смещение буферных оснований буферных систем, а истинные бикарбонаты - только бикарбонатных ионов.

    Клиническое значение показателей кислотно-щелочного равновесия

    Показатели К.-щ. р., или в данном случае кислотно-щелочного состояния (КЩС), являются важными клин, показателями гомеостаза. Распознавание нарушений КЩС осуществляется в клинике с помощью ряда показателей: pH крови, pCO 2 , SB (стандартный бикарбонат, т. е. концентрация бикарбоната в капиллярной крови, насыщенной кислородом), ВЕ (избыток оснований), а также pH мочи и содержания в ней кетоновых тел. Если pCO 2 артериальной крови свидетельствует о дыхательных нарушениях КЩС, то остальные показатели отражают метаболические нарушения. Лаб. данные, характеризующие КЩС, следует сопоставить с клин, картиной заболевания. Развитие ацидоза (см.) и алкалоза (см.) характеризуется как респираторными, так и метаболическими нарушениями К.-щ. р.; эти состояния могут переходить одно в другое при определенных условиях (неадекватная терапия и т. п.).

    Респираторный ацидоз возникает при резко сниженной альвеолярной вентиляции. Он наблюдается во всех случаях задержки в организме CO 2 , т. е. при гиперкапнии (см.), сопровождающей асфиксию, пневмонию, отек, эмфизему, ателектаз легких, при отравлении препаратами, угнетающими дыхательный центр (барбитуратами, морфином, фосфорными соединениями и др.), неадекватном управляемом дыхании, болевых ощущениях после операций на органах грудной и брюшной полостей.

    Респираторный алкалоз возникает при резко усиленной вентиляции легких, сопровождающейся быстрым выведением из организма CO 2 и развитием гипокапнии (см.) - pCO 2 ниже 23 мм рт. ст. Наблюдается при различных видах одышки, при вдыхании разреженного воздуха на большой высоте, при поражении головного мозга (воспаление, травма, опухоль), при гипертермии, при неадекватном управляемом дыхании.

    Метаболический ацидоз - самая частая и тяжелая форма нарушений КЩС. Он развивается при голодании, тяжелой физ. работе, при заболеваниях жел.-киш. тракта (стеноз, свищи, непроходимость кишечника, поносы), при выраженном гипертиреозе, при отравлениях к-тами (напр., уксусной, борной) и салицилатами, при шоках (кардиогенном, травматическом, ожоговом, операционном, геморрагическом), коллапсе, комах (диабетической, азотемической, уремической), при массивных трансфузиях длительно хранимой цитратной крови. Особенно тяжело проявляется метаболический ацидоз у детей, т. к. щелочные резервы у них ограничены. Метаболический ацидоз может осложниться респираторным. Поражение почек развивается при нарушениях секреции водородных ионов и аммиака, а также реабсорбции бикарбоната и натрия. Компенсация происходит в первую очередь за счет разбавления избыточных к-т внеклеточной жидкостью (аутогемодилюция), содержащей бикарбонат натрия. Активную роль играют белки, поглощающие водородные ионы в обмен на натрий и калий, в связи с чем может развиться гиперкалиемия (см.). Важную компенсаторную роль играет гипервентиляция - при ее ослаблении может развиться декомпенсированная форма ацидоза. Роль почек незначительна.

    Метаболический алкалоз встречается довольно часто при заболеваниях, связанных с приемом больших доз щелочных р-ров (напр., при изжоге); при введении больших количеств бикарбоната натрия (напр., при почечной недостаточности, при потере организмом хлора - гипохлоремическом алкалозе); при недостатке в плазме и клетках крови калия (гипокалиемический алкалоз); в результате угнетения реабсорбционной функции почек. Это состояние наблюдается при рвотах, кишечных свищах, токсикозах беременности, избыточной секреции стероидных гормонов и т. д.

    КЩС при травматическом шоке характеризуется метаболическим ацидозом, который может впоследствии перейти в метаболический алкалоз, что значительно ухудшает состояние-пострадавшего - затрудняется диссоциация оксигемоглобина, нарушается микроциркуляции, развивается гипокалиемия (см.). Потеря больших количеств крови обусловливает развитие метаболического ацидоза. При ожогах в результате плазмореи, дегидратации, гипопротеинемии, нарушений водно-электролитного баланса развивается метаболический ацидоз. При печеночной коме имеет место респираторный алкалоз, затем (в случае усиления циркуляторных расстройств) он Сменяется метаболическим ацидозом. При хрон, легочных заболеваниях, сопровождающихся гипервентиляцией, а следовательно, и гипокапнией, развивается респираторный алкалоз, который затем сменяется метаболическим ацидозом.

    Вследствие хрон, нарушения функции почек также возникает метаболический ацидоз. Язвенная болезнь желудка, сопровождающаяся рвотой, гепатитом, панкреатитом, колитом, осложняется метаболическим ацидозом; стеноз привратника - метаболическим алкалозом в связи с гипохлоремией; кишечная непроходимость - тканевым ацидозом в результате распада белков, потери натрия и обезвоживания; высоко расположенные наружные свищи - метаболическим алкалозом (потеря хлоридов), низко расположенные - метаболическим ацидозом (потеря щелочей). Сахарный диабет характеризуется диабетическим метаболическим ацидозом: в крови определяются кетоновые тела, а в моче - ацетон. Лечение нарушений К.-щ. р.- см. Алкалоз , Ацидоз .

    Методика определения параметров, характеризующих кислотно-щелочное равновесие

    Показатели К.-щ. р. определяются на аппарате микро-Аструп или отечественном АЗИВ-1. При данной методике требуется всего 0,1 мл капиллярной крови. Анализ занимает всего 3-5 мин. после взятия пробы крови. Одновременно определяются величины pH, pCO 2 , стандартные и истинные бикарбонаты, избыток буферных оснований, буферные основания и общая углекислота плазмы крови, т. е. исследуются все параметры К.-щ. р. крови (см. табл. 1).

    Кровь больного, взятая в стеклянный промытый гепариновым р-ром капилляр, всасывается специальным устройством в капилляр стеклянного электрода. Этот капилляр с кровью вводится в камеру каломельного электрода с насыщенным р-ром хлорида калия. Температура электродов поддерживается термостатом на уровне 37°. Каждая проба крови делится на 3 части. В одной порции измеряется pH, две других насыщаются в эквилибровочной камере в течение 3 мин. смесями O 2 и CO 2 заранее известного состава. Последние подаются в камеру из баллонов через увлажнители. В одном из баллонов pCO 2 ниже 40 мм рт. ст., в другом, наоборот,- выше. При анализе каждой пробы крови получают 3 значения pH - при истинном, низком и высоком pCO 2 .

    Номограмма Сиггор-Андерсена: точки А и В соответствуют заданным значениям pCO 2 ; точка F - место пересечения перпендикуляра, восстановленного из точки на оси абсцисс, соответствующей величине актуального pH (7,135), с прямой АВ. Перпендикуляр, опущенный из точки F на ось ординат, пересекает ее в точке, характеризующей показатель актуального pCO 2 (54 мм рт. ст.). Точки пересечения линии АВ и ее продолжений с графиками стандартного бикарбоната (I), буферных оснований (II) и излишка оснований (III) - точки D, E и С - характеризуют конкретные величины этих показателей при заданных значениях pCO 2 . По оси абсцисс - показатели актуального pH, по оси ординат - показатели актуального pCO 2 в мм рт. ст.

    По эквилибрационному методу Аструпа величину актуального pCO 2 определяют по актуальному pH и двум другим величинам pH при точно заданном pCO 2 (выше и ниже нормального уровня) по номограмме Сиггор-Андерсена. На графике (рис.) точки А и В, соответствующие двум величинам pCO 2 (выше и ниже нормального уровня), соединяют прямой линией. Через точку на абсциссе, соответствующую величине актуального pH, проводят линию, параллельную ординате, до пересечения с прямой АВ и находят точку F. Перпендикуляр, опущенный из точки F на ординату, попадает в точку, соответствующую величине актуального pCO 2 . Точки пересечения линии АВ и ее продолжений с кривой стандартного бикарбоната и излишка оснований позволяют определить соответствующие показатели для исследуемой порции крови.

    Более точным, но требующим специального приспособления, является прямое определение pCO 2 с помощью специального электрода; общее содержание CO 2 в крови можно определить по методу Ван-Слайка, объемному или манометрическому (см. Ван-Слайка методы), по методу Конвея (см. Конвея метод) или автоматическим колориметрическим методом. Величина общего содержания CO 2 может быть рассчитана по формуле CO 2 общ = + pCO 2 0,0301 на основании данных pCO 2 и или по номограмме Сиггор-Андерсена по величинам pH и pCO 2 . Щелочной резерв (способность крови связывать CO 2) определяют теми же способами, что и общую углекислоту, но в условиях уравновешивания плазмы при pCO 2 , равном 40 мм рт. ст. Наиболее удобна для определения щелочного резерва номограмма Сиггор-Андерсена.

    Приборы для определения кислотно-щелочного равновесия

    Основным прибором для определения К.-щ. р. является pH-метр, предназначенный для электрохим. измерения pH среды с помощью стеклянного ионоселективного электрода (см.). pH-Метр входит во все современные анализаторы К.-щ. р. и газов крови, в которые входит также газоселективный электрод Северинхауза для прямого определения pCO 2 . Большинство современных анализаторов К.-щ. р. обеспечивает также прямое измерение pO 2 среды с помощью газоселективного электрода Кларка. Хотя pO 2 и не является прямым показателем К.-щ. р., его измерение дает возможность более точно рассчитать ВЕ, а также оценить причину и характер изменений К.-щ. р. Важным преимуществом современных методов исследования К.-щ. р. является быстрота анализа и возможность использования микроколичеств капиллярной крови вместо артериальной (соответствие их показателей доказано для всех состояний, при которых нет существенного нарушения периферического кровообращения) .

    Отечественной мед. промышленностью выпускается АЗИВ-2. Он предназначен для прямого измерения величины pH и парциального давления кислорода (pO 2) при исследовании К.-щ. р. в пробах крови и других биол, жидкостей. Аппарат имеет блочную конструкцию, состоит из pH-метра и блока тонометра с первичными преобразователями и размещается на передвижном столе. pH-Метр обеспечивает: два диапазона измерения pH - от 4 до 9 ед. pH с абсолютной погрешностью измерения + 0,1 ед. pH и от 6,8 до 7,8 ед. pH с абсолютной погрешностью измерения + 0,02 ед. pH; три диапазона измерения pO 2 - от 0 до 100 мм рт. ст. с основной приведенной к верхнему пределу измерения погрешностью + 2,5%, от 0 до 200 мм рт. ст. с погрешностью + 2,5% и от 0 до 1000 мм рт. ст. с погрешностью + 5%. Включение pH-метра и выбор требуемых диапазонов измерения pH и pO 2 производятся с помощью клавишного переключателя. Блок тонометра состоит из стеклянного ионоселективного электрода pH, электрода сравнения и первичного преобразователя pO 2 . Сюда же относятся термостат и электроблок, который автоматически отключает вибратор, служащий для насыщения пробы крови газовыми смесями. Система термостатирования обеспечивает поддержание заданной температуры термостата 37 + 0,2°, первичного преобразователя pO 2 , стеклянного электрода и электрода сравнения. Температура проб крови при тонометрировании в сосудах поддерживается постоянной благодаря погружению сосудов непосредственно в термостат. Газовая система предназначена для подачи увлажненных и подогретых до 37° газовых смесей в сосуды, в которых производится уравновешивание крови с этими смесями, и в камеру первичного преобразователя pO 2 - для градуировки. Газовые смеси в баллонах должны иметь такие составы. Газ I: CO 2 - 4 ± 0,2%, O 2 - 21 ± 0,2%, остальное - N 2 ; газ II: CO 2 - 8 ± 0,2%, 02 - 21 ± 0,2%, остальное - N 2 . Первичный преобразователь pO 2 и электроды для измерения pH подключены непосредственно к приборным розеткам pH-метра, расположенным на его задней стенке и обозначенным соответственно «pO 2 », «pH изм. » и «pH всп. ». Определение pCO 2 производится косвенным методом интерполяции с использованием номограммы Сиггор-Андерсена. По номограмме определяются также и метаболические показатели К.-щ. р. Объем пробы, необходимый для анализа, не превышает 0,04 мл при измерении pH и 0,2 мл при измерении pO 2 .

    Газоанализатор АВЛ-937-C швейцарской фирмы «AVL» для определения К.-щ. р. имеет электроды для прямого измерения pH, pCO 2 и pO 2 в пробе крови объемом всего 0,02- 0,04 мл. Входящий в состав прибора компьютер автоматически подсчитывает и выдает в напечатанном виде, помимо величин pH, pCO 2 и pO 2 , также и величины ВЕ, ВВ, стандартного бикарбоната, общего содержания углекислого газа, показателя гемоглобина (%Hb) и кислородного насыщения крови. Электрод pO 2 представляет собой составную проволочную систему. Его отличает очень высокая чувствительность и точность измерений в широком диапазоне pO 2 , что достигается благодаря малому поглощению кислорода самим электродом. Имеется автоматический сигнализатор неисправности электродов. Одним из главных преимуществ прибора является наличие системы смешивания и калибровки газов. Питающие газы представляют собой атмосферный воздух, подаваемый компрессором с автоматическим поддержанием давления в ресивере, и стандартный углекислый газ из баллона. Т. о., отпадает необходимость иметь специальные баллоны с калибровочными газами, что очень упрощает обслуживание прибора. Отпадает также необходимость применения свободных от O 2 газов или жидкостей с целью нулевой калибровки электрода pO 2 .

    Наиболее современным устройством для определения К.-щ. р. и газов крови является прибор «ABL 2 Acid-Base Laboratory» датской фирмы «Radiometer». Он обладает всеми перечисленными выше достоинствами. Кроме того, весь процесс анализа - от момента поступления в прибор микропробы крови до получения цифровой информации о всех важнейших величинах К.-щ. р. и газов крови на стандартном бланке - полностью автоматизирован. Прибор считается образцом эргономически совершенного устройства.

    Диагностика нарушений кислотно-щелочного равновесия

    Основным способом диагностики нарушений К.-щ. р. организма является исследование крови одним из описанных выше методов. Анализ других биол, субстратов (мочи, эритроцитов, цереброспинальной жидкости) с этой целью предпринимается реже. Изменения показателей К.-щ. р. крови, соответствующие нек-рым (простым) нарушениям К.-щ. р., представлены в табл. 2. Как видно из таблицы, сами по себе величины pH, pCO 2 и ВЕ не всегда дают возможность дифференцировать ряд нарушений К.-щ. р. Напр., снижение pCO 2 и ВЕ при нормальной величине pH могут иметь место как при компенсированном метаболическом ацидозе, так и при компенсированном дыхательном алкалозе.

    Существенный недостаток распространенных методов оценки К.-щ. р. организма состоит в отождествлении К.-щ. р. крови in vitro (при лаб. исследовании) и in vivo (в целостном организме). В ряде случаев это отождествление приводит к существенным ошибкам в диагностике нарушений К.-щ. р. Так, напр., при дыхательном ацидозе in vivo ионы бикарбоната, образующиеся преимущественно в крови, частично переходят в интерстициальную жидкость, что, естественно, не может происходить in vitro. При лаб. исследовании крови этот процесс выражается снижением ВЕ и формально интерпретируется как метаболический ацидоз, хотя увеличения содержания нелетучих к-т в организме (в т. ч. и в крови) при дыхательном ацидозе не происходит. По аналогичным причинам компенсаторные реакции при нарушениях К.-щ. р. (напр., повышение концентрации ионов бикарбоната в плазме вследствие активации их реабсорбции в почечных канальцах при дыхательном ацидозе) выглядят как патол, процессы (в данном случае как метаболический алкалоз).

    Затруднения подобного рода были в значительной степени преодолены введением новых критериев метаболического компонента К.-щ. р. (ВЕ внеклеточной жидкости, а также отчасти концентрация бикарбоната плазмы) и изучением количественных зависимостей между показателями К.-щ. р. крови при различных четко определенных нарушениях К.-щ. р. организма. Так, напр., данные, характеризующие острый дыхательный ацидоз, были получены при кратковременной ингаляции газовых смесей, содержащих CO 2 , или так наз. диффузионном дыхании; хрон, дыхательный алкалоз выявляется у людей, длительно живущих в условиях высокогорья; хрон, метаболический ацидоз - у больных с почечной недостаточностью или декомпенсированным диабетом; хрон, дыхательный ацидоз - у больных с легочной недостаточностью и т. д.

    Результаты подобных исследований позволили определить границы изменений показателей К.-щ. р., наиболее вероятные при данном его нарушении. Однако при всей важности результатов исследования К.-щ. р. крови (особенно в динамике заболевания) решающее значение для диагностики нарушений К.-щ. р. приобретает сопоставление их с данными клин, исследования.

    Таблица 1. ПОКАЗАТЕЛИ КИСЛОТНО-ЩЕЛОЧНОГО РАВНОВЕСИЯ ОРГАНИЗМА И ИХ НОРМАЛЬНЫЕ ВЕЛИЧИНЫ (по Ф. И. Комарову и соавт., 1976)

    Показатель кислотно-щелочного равновесия

    Количественная характеристика показателя кислотно-щелочного равновесия

    Условия измерения или расчета

    Единицы измерения

    Нормальные величины

    Актуальная величина pH крови

    Отрицательный десятичный; логарифм концентрации водородных ионов крови в физиол, условиях

    При 38° в крови, взятой без соприкосновения о воздухом

    Ig10(отрицательный десятичной логарифм)

    7,36-7,42 (артериальная кровь) 7,26-7,36 (венозная кровь)

    Актуальное pCO2 цельной крови

    Парциальное давление углекислоты (H2CO3 + CO2) в крови в физиол, условиях

    При 38° в крови, полученной без соприкосновения с воздухом, или по соответствующей формуле (см. текст)

    мм рт. ст.

    35,8-46,6 (артериальная кровь) 46,0-58,0 (венозная кровь)

    Концентрация углекислоты

    Концентраций углекислоты в крови в физиол, условиях

    Вычисление по формуле pCO2х0,0301

    1,05-1,20 (артериальная кровь) 1,38-1,74 (венозная кровь)

    Актуальная концентрация бикарбонатов в плазме крови

    Концентрация бикарбонатов в плазме крови в физиол, условиях

    При 38° в плазме крови, взятой без соприкосновения с воздухом

    В норме нет

    Общая концентрация CO2плазмы крови (венозная кровь)

    Суммарная концентрация бикарбонатов и углекислоты в плазме крови в физиол, условиях, выраженная в единицах концентрации углекислоты

    При 38° в крови, взятой без соприкосновения с воздухом, а также по номограмме Сиггор-Андерсена

    ммоль/л об. %

    Способность плазмы крови связывать СО* (венозная кровь)

    Общая углекислота плазмы крови, выделенная из плазмы, уравновешенной с альвеолярным воздухом (щелочной резерв)

    В плазме крови, уравновешенной воздухом (pCO2=40 мм рт. ст.)

    мэкв/л об. %

    Стандартная концентрация бикарбонатов плазмы крови (капиллярная кровь)

    Концентрация бикарбонатов в плазме крови, уравновешенной альвеолярным воздухом и насыщенной кислородом

    В плазме крови, уравновешенной воздухом с pCO2=40 мм рт. ст. и предварительно насыщенной кислородом (оксигемоглобин = 100%)

    Буферные основания цельной крови или плазмы (ВВ)

    Суммарная концентрация анионных буферов (гл. обр. бикарбонатов и анионов белков) в крови, полностью насыщенной кислородом

    Вычисляются по номограмме Сиггор-Андерсена

    Нормальные буферные основания цельной крови (NBB)

    Буферные основания цельной крови при физиол, значениях pH и pCO2 альвеолярного воздуха

    В цельной крови при pH 7,38 и pCO2, равном 40мм рт. ст., 38°

    мэкв/л об. %

    В норме нет

    Излишек оснований (ВЕ)

    Разность между буферными основаниями и нормальными буферными основаниями

    Вычисляется по номограмме Сиггор-Андерсена

    Таблица 2. ПОКАЗАТЕЛИ КИСЛОТНО-ЩЕЛОЧНОГО РАВНОВЕСИЯ КРОВИ ПРИ ПРОСТЫХ ФОРМАХ ЕГО НАРУШЕНИЙ (СХЕМАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ)

    Нарушение кислотнощелочного равновесия

    Показатели кислотно-щелочного равновесия крови

    ВЕ (избыток оснований)

    Некомпенсированный метаболический ацидоз

    Частично компенсированный метаболический ацидоз

    Компенсированный метаболический ацидоз

    Некомпенсированный дыхательный ацидоз

    Частично компенсированный дыхательный ацидоз

    Компенсированный дыхательный ацидоз

    Некомпенсированный метаболический алкалоз

    Частично компенсированный метаболический алкалоз

    Компенсированный метаболический алкалоз

    Некомпенсированный дыхательный алкалоз

    Частично компенсированный дыхательный алкалоз

    Компенсированный дыхательный алкалоз

    Условные обозначения: ↓ - снижение; - увеличение; = нормальная величина; число стрелок соответствует степени (или выраженности) изменения кислотно-щелочного равновесия.

    Библиография Гомеостаз, под ред. П. Д. Горизонтова, М., 1976, библиогр.; Капланский С. Я. Кислотно-щелочное равновесие в организме и его регуляция, М.-Л., 1940; Крохалев А. А. Водный и электролитный обмен, М., 1972, библиогр.; Лазарис Я. А. и Сер е-бровская И. А. Нарушения кислотно-щелочного гомеостаза, Л., 1973; Робинсон Д ж. Р. Основы регуляции кислотно-щслочного равновесия, пер. с англ., М., 1969, библиогр.; Руководство по клинической реаниматологии, под ред. Т. М. Дар-биняна, с. 73, М., 1974; P у т Г. Кислотно-щелочное состояние и электролитный баланс, пер. с англ., М., 1978, библиогр.; Справочник по функциональной диагностике, под ред. И. А. Кассирского, с. 488, М., 1970; Физиология дыхания, под ред. Л. Л. Шика, с. 256, Л., 1973; A s t-г u р Р. а. о. The acid-base metabolism, Lancet, v. 1, p. 1035, 1960; Klahr S., W e s s 1 e r S. a. A v i o 1 i L. V. Acid-base disorders in health and disease, J. Amer. med. Ass., v. 222, p. 567, 1972; Rose B. D. Clinical physiology of acid~ base and elektrolyte disorders, N. Y., 19771 Siggaard-Andersen O. Therapeutic aspects of acid-base disorders, в кн.: Modern trends in anaesth., ed. by F. T. Evans а. Т. C. Gray, pt 3, p. 99, N. Y.-L.. 1967, bibliogr.; Waddell! W. J. а. В a t e s H. G. Intracellular pH, Physiol. Rev., v. 49, p. 285, 1969, bibliogr.

    В. М. Боголюбов; Я. А. Рудаев (тер.), В. М. Юревич (техн.).

    Лучшие статьи по теме