Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Вентиляция
  • Чему равен дыхательный коэффициент при окислении белков. Коэффициент дыхательный. Дыхательный коэффициент во время работы

Чему равен дыхательный коэффициент при окислении белков. Коэффициент дыхательный. Дыхательный коэффициент во время работы

Работа 3. Определение дыхательного коэффициента

Важный показатель химической природы дыхательного субстрата – дыхательный коэффициент (ДК ) – отношение объема выделенного углекислого газа (V (СО 2)) к объему поглощенного кислорода (V (О 2)). При окислении углеводов дыхательный коэффициент равен 1, при окислении жиров (более восстановленных соединений) кислорода поглощается больше, чем выделяется углекислого газа и ДК < 1. При окислении органических кислот (менее восстановленных, чем углеводы соединений) ДК > 1.

Величина ДК зависит и от других причин. В некоторых тканях из-за затрудненного доступа кислорода наряду с аэробным происходит анаэробное дыхание, не сопровождающееся поглощением кислорода, что приводит к повышению значения ДК . Величина дыхательного коэффициента обусловлена также полнотой окисления дыхательного субстрата. Если, кроме конечных продуктов, в тканях накапливаются менее окисленные соединения, то ДК < 1.

Прибор для определения дыхательного коэффициента (рис. 8) состоит из пробирки (рис. 8, а) или другого стеклянного сосуда (рис. 8, б ) с плотно пригнанной пробкой, в которую вставлена измерительная трубка со шкалой из миллиметровой бумаги.

Материалы и оборудование. Прорастающие семена подсолнечника, ячменя, гороха, фасоли, льна, пшеницы, 20 %-й раствор гидроксида натрия, шприц на 2 см 3 , цветная жидкость, чашка Петри, химическая пробирка, U-образно изогнутая трубка, эластичная трубка, пробка с отверстием, пинцет анатомический, полоски фильтровальной бумаги (1,5 5 см), миллиметровая бумага, песочные часы на 3 мин, штатив для пробирок.

Ход работы. В пробирку внесите 2 г прорастающих семян подсолнечника. Плотно закройте пробирку пробкой, соединенной эластичной трубкой с изогнутой U-образно стеклянной трубкой, и введите в конец последней при помощи пипетки небольшую каплю жидкости, создавая внутри прибора замкнутую атмосферу. Во время опыта обязательно поддерживайте постоянную температуру. Для этого поставьте прибор в штатив, избегая тем самым нагревания его руками или дыханием. Определите на сколько делений шкалы продвинется капля внутрь трубки за 3 мин. Для получения точного результата вычислите среднюю величину из трех измерений. Полученная величина выражает разницу между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Откройте прибор с семенами и положите в него пинцетом свернутую в кольцо полоску фильтровальной бумаги, предварительно пропитанную раствором NaOH. Снова закройте пробирку, поместите в измерительную трубку новую каплю цветной жидкости и продолжайте измерение скорости ее движения при той же температуре. Новые данные, из которых опять вычислите среднюю величину, выражают объем поглощенного при дыхании кислорода, так как выделившийся углекислый газ поглощается щелочью.

Рассчитайте дыхательный коэффициент по формуле: , где ДК – дыхательный коэффициент; В – объем поглощенного при дыхании кислорода; А – разница между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Сравните величины дыхательных коэффициентов предложенных объектов и сделайте вывод о химической природе дыхательных субстратов каждого из объектов.

_________________________________

1 Прибор для наблюдений газообмена при дыхании растений и животных ПГД (учебный): руководство по эксплуатации / под ред. Т.С.Чанова. – М.: Просвещение, 1987. – 8 с.

(например, в листьях и побегах суккулентных растений) и т. д. В зависимости от преимущественного использования тех или иных веществ в процессе дыхания величина дыхательного коэффициента будет изменяться. Когда дыхательным материалом является гексоза, то при полном ее окислении величина, дыхательного коэффициента равняется единице  

Увеличение влажности резко усиливает жизнедеятельность и в первую очередь дыхание зерна, сопровождающееся потребностью в кислороде. Вместе с тем запас кислорода в воде очень быстро истощается, например прн замачивании ячменя - за 60-80 мпн, и обеспечение зерна кислородом затруднено . Проникновению кислорода в зерно через зародыш (в начале замачивания) препятствует щиток, а через оболочки впоследствии - большое количество воды в тканях. Диффузия кислорода в воде примерное 10 ООО раз медленнее, чем в газе, кроме того, растворимость его в воде в 40 раз меньше, чем диоксида углерода . Недостаток кислорода в процессе замачивания подтверждается и величиной дыхательного коэффициента, который выше единицы (около 1,07), а через 8 ч от начала замочки равен 1,38, т. е. наблюдается уже анаэробное дыхание. 

Фактически же из рис. 60 можно увидеть, что дыхательный коэффициент окисления чайного таннина составляет 0,75, т. е. величину, почти вдвое превышающую теоретически рассчитанную. Интересно отметить, что, по данным Шуберт (1959), дыхательный коэффициент листьев чая в конце составляет 0,7-0,75 факт, свидетельствующий о том, что основным субстратом окислительных процессов в это время служит комплекс катехинов. 

Установив величину дыхательного коэффициента прямым определением , делают приближенное вычисление количества превратившихся в организме жиров и углеводов, приняв, что на долю белков приходится обычно около 15% энергии. Для этого можно руководствоваться табл. 16. 

Отравление организма сопровождается значительным нарушением обмена веществ. Усиливаются гидролитические процессы , уменьшается содержание в организме гликогена, жиров и липоидов, белковых веществ . Усиление транспирации приводит к значительной потере организмом воды . Уменьшается вес насекомых. Соответственно нарушениям обмена веществ уменьшается дыхательный коэффициент , достигая минимальной величины 0,4-0,5. 

Во всяком случае, при фотодинамических процессах потребляется кислород , но это не приводит к образованию СО, так как дыхательный коэффициент (т. е. отношение количества образовавшегося СО2 к количеству поглощенного О2) падает от величины, приблизительно равной единице, до 0,05. 

Величина дыхательного коэффициента 

Снижение величины дыхательного коэффициента

Интересен вопрос о влиянии света на величину дыхательного коэффициента. Выше уже отмечалось, что выделение СОг листьями на свету у всех видов исследованных растений происходит медленнее, чем у тех же листьев в темноте. Объясняется это тем, что та или иная часть СОг дыхания используется листьями в ходе процессов фотосинтеза. По этой причине ДК листьев на свету всегда ниже, чем тех же листьев в темноте. В особенности отчетливо эти закономерности наблюдаются на суккулентах, в тканях которых, как известно, накапливаются большие количества органических кислот. 

Изменения температуры могут резко сказываться на интенсивности поглощения тканями растения кислорода даже и в том случае, если содержание последнего в атмосфере остается неизменным. Наряду с этим температура оказывает мощное влияние не только на общую интенсивность дыхания, но и на соотно-щение между отдельными звеньями этого сложного комплекса процессов. В частности, изменения температуры нередко сильно сказываются на соотнощении между поглощением кислорода и выделением СОг, т. е. на величине дыхательного коэффициента. 

Врачи и биологи установили, что при окислении в организме углеводов до воды и углекислого гмза на одну затраченную молекулу кислорода выделяется одна молекула СО2. Таким образом , отношение выделенного СО2 к поглощенному О2 (величина дыхательного коэффициента) равна единице. В случае окисления жиров дыхательный коэффициент равен примерно 0,7. Следовательно, определяя величину дыхательного коэффициента, можно судить, какие вещества преимущественно сгорают в организме. Экспериментально установлено, что при кратковременных, но интенсивных энергия получается за счет окисления углеводов, а при длительных - преимущественно за счет сгорания жиров. Полагают, что переключение организма на окисление жиров связано с истощением резерва углеводов, что обычно наблюдается через 5- 20 мин после начала интенсивной мышечной работы. 

Вместо 100 мл начального объема газа при изменившемси давлении в конце опыта имеем 97,68 мл, а 1 мл при этих условних соответствует 0,9768 мл. Последний цифра и ивляется поправочным множителем (К) к первому отсчету объема газа в эвдиометре. Подставляем полученные величины в юрмулу и определяем дыхательный коэффициент  

Рис. 61 показывает, что в случае индивидуальных катехинов выделение углекислоты наблюдается лишь через 30 мин. При совместном же окислении этих катехинов выделение углекислоты начинается сразу же и в 3 раза превосходит величину, которую можно рассчитать на основании опытов с отдельными катехинами. Одновременно у смеси катехинов наблюдается и прирост ио-глощения кислорода, но в значительно меньших размерах (-1-45%), чем увеличение выделения углекислоты (- -300%). В результате дыхательный коэффициент возрастает более, чем вдвое. 

Макенн и Демусси определяли поправку на дыхание, экспериментируя в темноте Вильштеттер и Штоль доводили поправку на дыхание до ничтожно малой величины , работая на очень сильном свету с высокими концентрациями двуокиси углерода, т. е. в таких условиях , при которых фотосинтез был в 20-30 раз интенсивнее дыхания . В табл. 5 приведены данные из этих работ, а также из некоторых новых исследований, где материалом служили иные типы растений (низшие водоросли). Данные табл. 5 показывают удивительную устойчивость фотосинтетического коэффициента он не зависит от интенсивности света , длительности освещения, температуры, а кислорода и двуокиси углерода. Преобладают значения несколько выше единицы, и отклонения вряд ли превышают предел экспериментальной ошибки . Табл. 5 показывает также, что дыхательный коэффициент 

Для соединений, состоящих только из атомов С, О и Н (без перекисных связей), подходящей мерой уровня восстановленности является дыхательный коэффициент (выраженный в виде отношения АСОа/ - ДОд) или еще более удобна обратная ему величина- уровень восстановленности L. Показатель L равен числу молекул кислорода, необходимого для полного сжигания молекулы. 

К ресинтезу углеводов, или это чисто окислительный процесс . Если признать правильность теории, доказывающей, что все восстановительные ступени фотосинтеза между комплексами СО) и Н СО должны быть фотохимическими (см. фиг. 20), то темновое превращение яблочной или лимонной кислоты в углеводы кажется невозможным. Уровни восстановленности этих кислот меньше единицы, т. е. они не могут превращаться в углеводы без доступа энергии. Но мы уже рассматривали в главе VH схемы реакций , в которых лишь первая ступень восстановления двуокиси углерода использует световую энергию , а энергия, нужная для последующих ступеней восстановления , доставляется дисмутациями. Таким образом , яблочная и лимонная кислоты могли бы восстанавливаться до углеводов и без помощи света, если часть их будет одновременно окисляться. Подобная энзиматическая дисмутация считается возможной она поддерживается фактом, что дыхательный коэффициент суккулентов во время темнового разрушения кислот часто значительно выше чем 1,33, т. е. величины,. соответствующей сжиганию яблочной кислоты 1212J. В случае чистой дисмутации этот коэффициент должен обратиться в бесконечность. В связи с этими рассуждениями можно привести и другие экспериментальные данные. На стр. 271 указывалось, что в опытах по образованию водорослями крахмала в темноте могли использоваться, как правило, только вещества с i >-1 однако оказалось, что существуют некоторые исключения. 

Если листья толстянковых, после того как в них произошло максимальное накопление кислот , оставить в темноте, то их кислотность начинает падать в результате потребления яблочной кислоты с выделением СО2. Это выделение СО2 накладывается на дыхательный обмен , приводя к увеличению дыхательного коэффициента , так что иногда он начинает намного превышать величину 1,33 (это максимальная величина , ожидаемая для полного окисления малата до СО2 и воды). В некоторых, весьма немногочисленных опытах имеются указания на то, что в процессе темнового снижения кислотности происходит некоторое накопление углеводов эти данные служат подтверждением предположения, высказанного много лет назад Беннетом-Кларком согласно этому предположению, в тех случаях, когда наблюдаются очень высокие величины дыхательного коэффициента, происходит потребление части малата в анаболических реакциях . Однако, когда листья, содержащие меченый малат (фиксация С в темноте), подвергали воздействиям , способствующим уменьшению кислотности (к таким воздействиям относится, в частности, повышение температуры), в углеводах листьев обнаруживалось не больше нескольких процентов С. Таким образом , в настоящее время приходится признать , что предположение, согласно которому малат, образовавшийся в процессе ОКТ, превращается в темноте в углеводы в количестве, поддающемся учету, не имеет прямых доказательств если это и возможно, то лишь в исключительных обстоятельствах. 

Как уже обсуждалось в предыдущем разделе, растения, у которых протекает ОКТ, обладают выраженной способностью к фиксации СО2. Первым накапливающимся продуктом является малат однако возможно, что изолимонная и лимонная кислоты , накапливающиеся в заметных количествах в листьях таких растений при их развитии, образуются из малата посредством реакций цикла таким образом , в них находится часть углерода, включившегося в листья при темновой фиксации СО2. Такую фиксацию можно легко наблюдать у растений типа толстянковых, так как накопление малата у них происходит быстро и обратимо. В других органах , например в развивающихся листьях, побегах и плодах, кислоты накапливаются относительно медленно и для практических целей необратимо. В этих органах фиксацию СО2, если она происходит, приходится выявлять в таких условиях , когда количество фиксированной СО2 незначительно по сравнению с количеством СО2, выделяющейся в клеточных процессах окисления. Таким образом , в конечном счете можно было бы наблюдать некоторое, возможно, совсем незначительное, понижение величины дыхательного коэффициента по сравнению с той величиной, которую следовало бы ожидать для процессов окисления в органе. Имеются сообщения, что в нескольких случаях наблюдались низкие величины дыхательного коэффициента во время накопления кислот, причем на более ноздних стадиях, когда происходит суммарное расходование кислот, эти величины повышались . Эти наблюдения 

Хьюм и др. показали также, что окислительная активность митохондрий, выделенных из яблок (особенно из ткапи кожицы), повышалась на протяжении климактерического периода , причем это повышение начиналось за несколько дней до того, как усиливалось выделение СО2 в целом плоде. (Митохондриальную активность измеряли по поглощению кислорода и выделению углекислоты при добавлении сукцината и малата.) Это наблюдение наряду с тем фактом, что во время климактерического периода несколько возрастало содержание белка, привело Хьюма и его сотрудников к предположению, что в этот период происходит синтез ферментов (пируватдекарбоксилазы и малик-фермента), причем энергия, необходимая для этого синтеза , поступает за счет повышенной митохондриальной активности. Исследователи предположили, далее, что причиной конечного падения интенсивности дыхания до величины, которая остается затем почти постоянной (пока не наступит полный распад ткани), является недостаток кислотного субстрата , необходимого как для цикла Кребса , так и для малик-фермента . Нил и Хьюм показали, что дыхательный коэффициент у дисков из сильно перезревших 

Эти длппыс получены Б экспсримбнтзх с кйрпом и серебряным карасем - представителями

Экскреция азота может быть использована для определения метаболизма белка. В белке содержится приблизительно 16% азота. В процессе метаболизма белка около 90% присутствующего в белке азота экскретируются с мочой в виде мочевины, мочевой кислоты, креатинина и прочих менее важных соединений, содержащих азот.

Остальные 10% экскретируются с каловыми массами , поэтому скорость распада белка в организме может быть подсчитана путем определения содержания азота в моче: к этому количеству добавляют 10% азота, экскретируемого с калом, и умножают на 6,25 (т.е. 100/16). Таким образом можно определить общее количество белка, распавшегося в организме за сутки. Так, например, экскреция 8 г азота с мочой за сутки означает, что около 55 г белка подверглись распаду. Если ежесуточное потребление белка меньше количества его распада, говорят об отрицательном азотистом балансе, что означает ежедневное уменьшение содержания белка в организме.

Дыхательный коэффициент - отношение объема выделенного СО2 к объему потребленного О2 - можно использовать для определения расхода углеводов и жиров. Если углеводы метаболизируются с использованием кислорода, то при окислении каждой молекулы углеводов образуется 1 молекула углекислого газа и расходуется 1 молекула кислорода. В этом случае отношение объема выделенной углекислоты к объему потребленного кислорода, называемое дыхательным коэффициентом, при окислении углеводов будет равно 1,0.

При окислении жиров в среднем на каждые 70 молекул образовавшегося углекислого газа приходится 100 молекул потребленного кислорода. Дыхательный коэффициент при окислении жиров составляет 0,7. При окислении только белков дыхательный коэффициент приблизительно равен 0,8. Кислород, расходуемый на окисление этих веществ, взаимодействует с атомами водорода, в избытке присутствующими в молекулах этих веществ, поэтому при использовании равных количеств кислорода образуется меньше углекислого газа.
По этой причине дыхательный коэффициент при окислении белков и жиров меньше, чем при окислении углеводов.

Рассмотрим, как можно использовать дыхательный коэффициент для определения степени использования тех или иных питательных веществ в организме. Количество углекислого газа, выделенного легкими, деленное на количество кислорода, потребленного за то же время, называют показателем легочной вентиляции. Если этот показатель отслеживать приблизительно в течение часа, показатель легочной вентиляции становится равным дыхательному коэффициенту. Приближение значения дыхательного коэффициента к 1,0 указывает на то, что в организме окислялись углеводы, т.к. дыхательный коэффициент при окислении белков и жиров значительно меньше 1,0. Если дыхательный коэффициент ближе к 0,7, то в организме окисляются только жиры.

Наконец, если не учитывать возможность окисления небольшого количества белков, то значения дыхательного коэффициента в интервале значений 0,7-1,0 могут приблизительно указывать на преобладание окисления жиров либо углеводов. Для более точного определения следует подсчитать расход белка с помощью определения количества экскретируемого азота, а затем, используя соответствующие математические формулы, почти точно рассчитать количество израсходованных жиров и углеводов.
Перечислим наиболее существенные результаты, полученные при изучении дыхательного коэффициента.

1. Сразу после приема пищи наиболее существенным субстратом окисления становятся углеводы. Дыхательный коэффициент в этот период приближается к 1,0.
2. Через 8-10 ч после приема пищи, когда организм почти использовал все имеющиеся в наличии углеводы, дыхательный коэффициент приближается к 0,7, что указывает на преобладание использования жиров.

3. При наличии нелеченного сахарного диабета очень небольшое количество углеводов может использоваться организмом в любых условиях, т.к. для их использования необходим инсулин, поэтому при тяжелом диабете дыхательный коэффициент практически всегда остается приближенным к 0,7, что характерно для преобладания окисления жиров.

Методы измерения затрат энергии (прямая и непрямая калориметрия).

Образование и расход энергии.

Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах - 0,2-0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду.

Прямая калориметрия основана на непосредственном определении тепла, высвобождающегося в процессе жизнедеятельности организма. Человека помещают в специальную калориметрическую камеру, в которой учитывают все количество тепла, отдаваемого телом человека. Тепло, выделяемое организмом, поглощается водой, протекающей по системе труб, проложенных между стенками камеры. Метод очень громоздок, применение его возможно в специальных научных учреждениях. Вследствие этого в практической медицине широко используют метод непрямой калориметрии. Сущность этого метода заключается в том, что сначала определяют объем легочной вентиляции, а затем - количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода носит название дыхательного коэффициента . По величине дыхательного коэффициента можно судить о характере окисляемых веществ в организме.

При окислении углеводов дыхательный коэффициент равен 1 так как для полного окисления 1 молекулы глюкозы до углекислого газа и воды потребуется 6 молекул кислорода, при этом выделяется 6 молекул углекислого газа:

С 6 Н12О 6 +60 2 =6С0 2 +6Н 2 0

Дыхательный коэффициент при окислении белка равен 0,8, при окислении жиров - 0,7.

Определение расхода энергии по газообмену. Количество тепла, высвобождающегося в организме при потреблении 1 л кислорода - калорический эквивалент кислорода - зависит от того, на окислении каких веществ используется кислород. Калорический эквивалент кислорода при окислении углеводов равен 21,13 кДж (5,05 ккал), белков - 20,1 кДж (4,8 ккал), жиров - 19,62 кДж (4,686 ккал).

Расход энергии у человека определяют следующим образом. Человек дышит в течение 5 мин, через мундштук (загубник), взятый в рот. Мундштук, соединенный с мешком из прорезиненной ткани, имеет клапаны. Они устроены так, что человек свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок. С помощью газовых часов измеряют объем выдохнутого воздуха. По показателям газоанализатора определяют процентное содержание кислорода и углекислого газа во вдыхаемом и выдыхаемом человеком воздухе. Затем рассчитывают количество поглощенного кислорода и выделенного углекислого газа, а также дыхательный коэффициент. С помощью соответствующей таблицы по величине дыхательного коэффициента устанавливают калорический эквивалент кислорода и определяют расход энергии.

Дыхательным коэффициентом называется отношение объема выделенного угле­кислого газа к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Рассмотрим для примера, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисле­ния молекулы глюкозы можно выразить формулой:

При окислении глюкозы количество молекул образовавшегося углекислого газа и количество молекул затраченного (поглощенного) кислорода равны. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро - Жерара). Следовательно, дыхательный коэффициент

отношение) при окислении глюкозы и других углеводов равен единице.


При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл. 20.

Таблица 20 Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Оч носительное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Количество потребленного организмом кислорода исследуется при помощи различ­ного типа спирографов.

Лучшие статьи по теме