Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Теплый дом
  • Электрические осветительные приборы. Классификация световых приборов. Дополнительная классификация световых приборов

Электрические осветительные приборы. Классификация световых приборов. Дополнительная классификация световых приборов

Явлением стробоскопического эффекта является применение схем включения ламп таким образом чтобы соседние лампы получали напряжение со сдвигом фаз т. Защитный угол светильника – угол заключённый между горизонталью проходящей через тело накала лампы и линией соединяющей крайнюю точку тела накала с противоположным краем отражателя. где h расстояние от тела накала лампы до уровня выходного отверстия светильника...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


лектрическое освещение и сети. Раздел I

Раздел I

Электрические источники света и осветительные приборы

1.1. Требования к осветительным установкам

К освещению промышленных предприятий предъявляются следующие требования:

  • достаточная яркость рабочей поверхности;
  • постоянство освещения;
  • ограничение пульсации светового потока;
  • ограничение ослеплённости;
  • благоприятное распределение яркости в поле зрения.

Достаточная яркость рабочей поверхности является необходимым условием для обеспечения нормальной работоспособности человеческого глаза.

Величина освещённости рабочего места устанавливается в зависимости от точности выполняемой производственной операции. Чем точнее работа, чем меньше объекты различения и чем дальше эти объекты расположены от рабочего, тем уровень освещённости должен быть выше.

Однако уровень освещённости определяется не только величиной объектов различения и расстоянием их до глаза рабочего, но и контрастом объектов различения с фоном, а также степенью светлоты фона, т. е. поверхностью обрабатываемого изделия.

Постоянство освещённости на рабочем месте является необходимым условием в осветительной установке.

Колебания освещённости на рабочей поверхности могут являться следствием колебания напряжения в осветительной сети или раскачивания светильников местного освещения, свободно подвешенных на подводящих ток проводах.

Колебания освещённости вызывают зрительное утомление. Исследования показали, что колебания освещенности имеют место при изменении амплитуды напряжения на ±4 % от номинального значения.

Ограничение пульсации светового потока. Для люминесцентных ламп, работающих в сетях переменного тока, как и для любых других газоразрядных источников света, характерно наличие колебаний светового потока во времени, определяемых безынерционностью излучения электрического разряда.

Колебания светового потока создает так называемый стробоскопический эффект . Стробоскопический эффект нарушает правильное восприятие глазом движущихся предметов.

Достаточной мерой борьбы с пульсацией светового потока, т. е. явлением стробоскопического эффекта, является применение схем включения ламп таким образом, чтобы соседние лампы получали напряжение со сдвигом фаз, т. е. включение ламп в многоламповых светильниках на разные фазы; или применение двухламповой схемы, где одна лампа включается последовательно с индуктивным сопротивлением, а другая – последовательно с индуктивным и емкостным сопротивлением.

Ограничение ослеплённости. Уровень ослеплённости, создаваемый светильниками, расположенными в поле зрения, определяется их яркостью и силой света по направлению к глазу наблюдателя, высотой их расположения над линией зрения и яркостью окружающего фона.

В соответствии с этим ограничение ослеплённости в действующих СНиП сводится к регламентации минимально допускаемой высоты подвеса светильника над полом освещаемого помещения в зависимости от защитного угла светильника, характера рассеивателя и мощности источника света, определяющих его яркость и силу света по направлению к глазу наблюдателя.

Защитный угол светильника – угол, заключённый между горизонталью, проходящей через тело накала лампы, и линией, соединяющей крайнюю точку тела накала с противоположным краем отражателя.

Светильники с защитным углом менее 10° без рассеивателей и с лампами в прозрачной колбе для общего освещения помещений не допускаются.

Величину защитного угла можно определить из соотношения:

, (1.1)

где h – расстояние от тела накала лампы до уровня выходного отверстия светильника, мм; R – радиус выходного отверстия светильника, мм; r – радиус кольца тела накала лампы, мм.

В установках местного освещения должно быть обращено особое внимание на устранение бликов, возникающих на поверхностях с направленным отражением, что достигается соответствующим выбором размещения светильников, исключающим попадание отраженных лучей в глаза работнику.

Распределение яркости в поле зрения. В практических условиях освещения недопустима большая неравномерность распределения яркости в поле зрения, которая может возникнуть, если яркость рабочей поверхности резко отличается от яркости стен и потолка помещения.

Для сохранения удовлетворительного распределения яркости в окружающем пространстве светильники общего освещения должны создавать на уровне рабочей поверхности не менее 10 % освещенности, нормированной для данного рода работ при комбинированном освещении, но и не более 30 %.

Неравномерность распределения яркости в поле зрения может быть вызвана падающими тенями, возникающими от расположенных вблизи предметов, корпуса работника или неравномерным освещением рабочей поверхности. Неравномерность распределения яркости по рабочей поверхности не регламентирована СНиП, однако при проектировании осветительной установки надо стремиться к устранению затенения и равномерному распределению освещённости в пределах рабочей поверхности.

1.2. Общие сведения о световых величинах

Одна из основных величин, характеризующих источник света, – световой поток.

Световой поток Ф – мощность световой энергии или видимого излучения, оцениваемого по световому ощущению, которое оно производит на глаз человека.

Единица измерения светового потока – люмен [лм].

Точечный источник, сила света которого равна 1 канделе [кд] в телесном угле , равном 1 стерадиану [ср], испускает световой поток, равный 1 люмену:

, (1.2)

где I – сила света, кд; Ф – световой поток, лм; ω – телесный угол, ср.

Телесный угол – часть пространства, которая является объединением всех лучей, выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол). Границей телесного угла является некоторая коническая поверхность.

Телесный угол измеряется отношением площади той части сферы с центром в вершине угла, которая вырезается этим телесным углом, к квадрату радиуса сферы: Ω = S / r 2 .

Стерадиан – единица измерения телесных углов. Стерадиан равен телесному углу с вершиной в центре сферы радиусом r , вырезающему из сферы поверхность площадью r 2 .

Рисунок 1.1 – Графическое изображение телесного угла

в 1 ср

Сила света I характеризует пространственную плотность излучаемого светового потока.

Сила света, равная 1 канделе, испускается с площади 1/600000 м 2 сечения полного излучателя в перпендикулярном этому сечению направлении при температуре излучателя, равной температуре затвердевания платины при давлении 101325 МПа.

Телесный угол ω в 1 ср соответствует части пространства, ограниченной конической поверхностью с вершиной в центре сферы и вырезанным на её поверхности участком, равным величине квадрата радиуса сферы:

, (1.3)

где S – площадь участка сферы, вырезаемого телесным углом, м 2 ; r – радиус сферы, м.

Освещённость E – поверхностная плотность падающего светового потока, которая определяется отношением светового потока, падающего на поверхность, к площади этой поверхности:

. (1.4)

Единица измерения освещенности – люкс [лк].

Светимость R – поверхностная плотность излучаемого светового потока, определяется из соотношения

, (1.5)

где R – светимость, лм/м 2 ; Ф – световой поток, лм; S и – площадь излучающей поверхности, м2 .

Яркость L – поверхностная плотность силы света в заданном направлении.

, (1.6)

где I α – сила света по направлению угла α, кд; dScosα – площадь проекции светящегося тела на плоскость, перпендикулярную направлению, отсчитываемую от нормали к поверхности излучаемого тела, м 2 ; L α – яркость, кд/м 2 .

1.3. Электрические источники света

По способу генерирования света все электрические источники делятся на

  • температурные (например, лампы накаливания, в т. ч. галогенные);
  • люминесцентные (холодного свечения; например, газоразрядные).

Основными характеристиками источников света являются следующие номинальные величины:

  • напряжение;
  • мощность;
  • световой поток;
  • световая отдача ;
  • средняя продолжительность работы (горения).

Световая отдача γ лампы определяется отношением её излучаемого светового потока Ф л к потребляемой электрической мощности Р л :

. (1.6)

Единица измерения световой отдачи – лм/Вт.

Световая отдача ламп основной серии лежит в пределах 7…19 лм/Вт.

Лампы накаливания (ЛН) состоят из цоколя и стеклянной колбы, внутри которых расположена вольфрамовая нить накала.

Лампы накаливания общего назначения выпускаются в диапазоне мощности 15–1500 Вт на напряжение от 12 до 220 В.

Лампы подразделяются на вакуумные (В) мощностью 15–25 Вт и газонаполненные (Б, Г) мощностью от 40 до 1000 Вт. Газонаполненные лампы (Б,Г) после откачки воздуха заполняются аргоном с добавлением 12…16 % азота. Буква Б обозначает биспиральное исполнение элемента свечения. Светоотдача с криптоновым наполнением на 10…20 % больше лампы с аргоновым наполнением. Стоимость криптона выше стоимости аргона, поэтому лампы с криптоновым наполнением (БК) дороже ламп с аргоновым наполнением (Б, Г). Необходимость вакуумирования ламп вызвана тем, что вольфрамовая нить накала нагревается до температуры 2000…2500 K , т. е. до температуры, при которой вольфрам окисляется в присутствии кислорода. Лампы мощностью 40 Вт и более наполняются газом, который уменьшает интенсивность распыления нити накаливания даже при более высоких температурах. Вольфрамовая нить накаливания может сворачиваться в спираль, биспираль (Б) и другие формы.

Большинство ламп накаливания изготавливают из прозрачного стекла. Для создания более рассеянного света выпускают лампы с баллонами из матированного, опалового или молочного стекла. Светоотдача их меньше, чем ламп с прозрачным баллоном. Лампы в светорассеивающих колбах имеют следующую буквенную индексацию: МТ – матированная; МЛ – молочная; О – опаловая.

Широко распространены лампы местного освещения на напряжение 12, 24 и 36 В мощностью до 100 Вт.

Средняя продолжительность горения ЛН при номинальном напряжении определяется в 1000 часов. Срок службы их сокращается в условиях повышенного напряжения и увеличивается при работе в условиях пониженного напряжения. В настоящее время выпускаются лампы на напряжение в определенных пределах, например, 215…225, 220…230, 230…240 В. Лампы на 230…240, 235…245 В применяют на лестничных площадках, в коридорах для дежурного освещения, т. к. ночью и днем может быть повышенное напряжение. Но их нецелесообразно применять при стабильном напряжении 220 В из-за значительного уменьшения их светового потока.

Простота схем включения делает лампы накаливания надежными источниками света в светильниках местного освещения, в осветительных установках аварийного освещения и некоторых других случаях.

Люминесцентные лампы (ЛЛ) относятся к газоразрядным лампам, видимое излучение в которых происходит под действием электрического разряда в газах и парах металлов.

Люминесцентные лампы состоят из трубки с электродами на её концах. На внутреннюю поверхность стеклянной трубки нанесен тонкий слой люминофора. Каждый электрод состоит из вольфрамовой нити накала и двух никелевых усов. От электродов выведены наружу два контакта. Колба лампы заполнена аргоном под небольшим давлением. Для создания ртутных паров в нее введена небольшая капелька ртути.

Трубчатые ЛЛ низкого давления отличаются от ЛН по всем характеристикам.

Световая отдача – 75 лм/Вт. Средняя продолжительность работы (горения) всех типов ЛЛ не менее 12000 часов, т. е. значительно больше, чем ЛН. Световая отдача и к. п. д. ЛЛ также в несколько раз выше, чем ЛН.

По цветности излучения трубчатые ЛЛ низкого давления делятся на: ЛБ – лампы белого цвета; ЛХБ – холодно-белого цвета; ЛТБ – лампы тёпло-белого цвета; ЛД – дневного цвета; ЛДЦ – дневного цвета для правильной цветопередачи.

ЛЛ предназначены для работы при температуре окружающего воздуха +5…+50  С. При температуре меньше +10 С лампы не зажигаются. Для зажигания и горения ламп необходимо включение последовательно с ними пускорегулирующих аппаратов (ПРА). ПРА разделяются на индуктивные (И), ёмкостные (Е) и компенсированные (К); на аппараты с параллельным, пониженным (П) и особо низким (ПП) уровнем шума.

Прямые ЛЛ выпускаются мощностью: 4; 6; 8; 15; 20; 30; 40; 65; 80; 150 Вт. В сети напряжением 127 и 220 В применяются ЛЛ от 15 до 80 Вт. ЛЛ мощностью 30, 40, 65, 80 Вт могут работать только в сети напряжением 220 В, они же наиболее распространены в люминесцентном освещении. Кроме того, применяются лампы с мощностью 18, 36 и 58 Вт. При маркировке ламп мощность указывают цифрой, например, ЛЛ мощностью 40 Вт: ЛБ 40, ЛТБ 40, ЛДЦ 40, ЛХБ 40. По своей форме ЛЛ классифицируются на следующие типы (кроме прямых): U -образные – 8–80 Вт; W -образные – 30 Вт; кольцевые – 20–40 Вт.

К недостаткам люминесцентного освещения относятся:

  • возможность стробоскопического эффекта;
  • длительность процесса зажигания (несколько секунд);
  • низкий коэффициент мощности;
  • более высокие затраты по сравнению с затратами на освещение ЛН;
  • резкое сокращение срока службы ламп при частых включениях.

Однако несмотря на эти недостатки, люминесцентное освещение нашло широкое применение, т. к. ЛЛ при меньшем расходе электроэнергии обеспечивают большую светоотдачу.

Лампы ДРЛ – четырёхэлектродные дуговые лампы высокого давления с люминофорным покрытием на колбе.

Такие лампы выполняются в пределах мощностей 80–2000 Вт и имеют световую отдачу 40…60 лм/Вт. Срок службы до 12000 часов, к концу срока службы световой поток снижается до 70 % от первоначального. ДРЛ включаются через одноламповые индуктивные ПРА, потери мощности в которых составляют около 10 %. Лампы мощностью 2000 Вт включаются на линейное напряжение системы 380/220 В, остальные – на 220 В. Процесс разгорания ламп после включения длится 5–7 минут. При температуре от –10 до +25 °С и выше лампы не утрачивают своих качеств.

Преимуществом ДРЛ по сравнению с ЛЛ является их компактность при высокой единичной мощности.

Существенный недостаток – плохая цветопередача их излучения, позволяющая применять лампы ДРЛ только при отсутствии каких-либо требований к различению цветов, а также значительные пульсации светового потока.

Лампы ДКсТ – дуговые ксеноновые трубчатые лампы с воздушным охлаждением. Работают без ПРА, но зажигаются с помощью специального пускового устройства.

Мощность – 5; 10; 20 и 50 кВт. Световая отдача – 20…45 лм/Вт. Срок службы – 300…750 часов, но при стабилизации напряжения может достигать и 3000 часов. Лампы 5 кВт включаются на 220 В попарно-последовательно, лампы 10 кВт – в сеть 220 В; более мощные – в сеть 380 В.

Область применения ограничена вредным для людей избытком в их спектре ультрафиолетовых лучей. Этот недостаток устранён в лампах в колбе из легированного кварца (ДКсТЛ). Пульсации светового потока у ламп ДКсТ особенно велики. Температура окружающей среды влияния не оказывает.

Металлогенные лампы МГЛ и ДРИ (металлогенные и натриевые) выпускаются мощностью 250; 400; 700; 1000; 2000 Вт. Лампы мощностью 2000 Вт включаются в сеть 380 В. Световая отдача до 100 лм/Вт. Срок службы от 1000 до 5000 часов. Лампы включаются в сеть через ПРА, состоящие из дросселя и поджигающего устройства УИЗУ, дающего импульсы высокого напряжения.

У ДНаТ световая отдача – 180 лм/Вт. Лампы ДНаТ дают только жёлтый свет, поэтому пригодны только для освещения загородных автострад. Срок службы 20000 часов. В сеть включаются через однофазные индуктивные ПРА.

Применение электрических источников света разных типов:

для общего освещения производственных помещений высотой 8 и более метров применяются, в основном, газоразрядные лампы . Лампы накаливания применяются главным образом в помещениях, где производятся грубые работы или осуществляется общий надзор за работой оборудования (подвалы, туннели, кладовые, проходы между фундаментами машин и т. д.) или же в помещениях, где использование газоразрядных ламп не возможно по каким-либо причинам. Для местного освещения применяются ЛН и ЛЛ (при высоких требованиях к цветопередаче и при работах с блестящими поверхностями). Для общественных зданий обязательно применяют ЛЛ , а в коридорах, гардеробах, фойе, санузлах, кладовых, подвалах, чердаках и т. п. применяются ЛН .

Для самостоятельного изучения:

1.4. Осветительные приборы

Осветительный прибор ближнего действия называется светильником .

Светильник состоит из двух основных частей – источника света и устройства, перераспределяющего световой поток источника в пространстве (отражатель, рассеиватель и т. п.). Кроме того, в состав светильника входит арматура: провода, ламподержатели или патроны, детали крепления и пускорегулирующие устройства (ПРА).

Экономичность, качество и удобство эксплуатации осветительной установки зависят от выбора светильников. Экономичность и качество освещения определяются их светотехническими характеристиками, надёжность и эксплуатационные требования – конструктивным исполнением.

Светильники характеризуют по ряду признаков:

  • по характеру светораспределения;
  • по форме кривой силы света;
  • по типу источника света;
  • по способу установки;
  • по защищённости от воздействия внешней среды;
  • по целевому назначению и т. д.

ГОСТ 17677–82 «Светильники. Общие технические условия» предусматривает классификацию светильников по указанным условиям.

Полная светотехническая характеристика светильника образуется:

  1. из его класса светораспределения;
  2. из формы кривой силы света в любых меридианах (т. е. в вертикальных плоскостях) и направления максимума силы света;
  3. из степени защиты от пыли и воды.

Перечисленные параметры, характеризующие светильник, определяются по справочной литературе: классификация светильников по светораспределению – ; классификация светильников по форме кривой силы света – ; минимально допустимая степень защиты светильников – .

Структура условного обозначения светильников по ГОСТ 17677–82.

Первая буква – источник света:

Н – лампы накаливания;

С – лампы-светильники (зеркальные, диффузные);

И – кварцевые галогенные (накаливания);

Л – прямые трубчатые люминесцентные;

Ф – фигурные люминесцентные;

Р – ртутные типа ДРЛ;

Г – ртутные типа ДРИ, ДРИШ;

Ж – натриевые типа ДНаТ;

Б – бактерицидные;

К – ксеноновые трубчатые.

Вторая буква – способ установки светильника:

С – подвесные;

П – потолочные;

В – встраиваемые;

Д – пристраиваемые;

Б – настенные;

Н– настольные, опорные;

Т – напольные, венчающие;

К – консольные, торцевые;

Р – ручные;

Г – головные.

Третья буква – назначение светильника:

П – для промышленных и производственных зданий;

О – для общественных зданий;

Б – для жилых домов;

У – для наружного освещения;

Р – для рудников и шахт;

Т – для кинематографических и телевизионных студий.

Затем следуют:

  • число, обозначающее номер серии (01–99);
  • число ламп в светильнике (если больше одной);
  • число, обозначающее мощность ламп в ваттах;
  • число, обозначающее номер модификации светильника (001–999);
  • буквы и числа, обозначающие климатическое исполнение и категорию размещения светильника.

1.5. Нормирование искусственного освещения

Уровень нормированной освещённости для производственных и вспомогательных помещений устанавливают по СНиП 23-05-95 с учетом разряда зрительных работ, выбранного источника света, применяемой системы освещения, отсутствия или наличия естественного света. Нормы освещённости устанавливают при проектировании по отраслевым нормативным документам, а при их отсутствии – в соответствии со СНиП 23-05-95.

При наличии факторов, имеющих значение при выборе освещённости, выбранная по нормам освещённость повышается или понижается на одну ступень. В основу норм положена шкала освещённости:

0,2; 0,3; 0,5; 1; 2; 3; 5; 7; 10; 20; 30; 50; 75; 100; 150; 200; 300; 400;

500; 600; 750; 1000; 1250; 2000; 2500; 3000; 3500; 4000; 4500; 5000.

К повышающим факторам относятся:

  • удалённость рабочей поверхности от глаз на 1 м;
  • непрерывный характер работы;
  • повышенная опасность травматизма;
  • повышенные санитарные требования;
  • отсутствие или недостаточность естественного освещения;
  • предназначенность помещения для работы или обучения подростков.

Понижающие факторы:

  • кратковременность пребывания людей в помещении;
  • наличие оборудования, не требующего постоянного наблюдения.

Нормы освещённости для различных случаев приведены, например, в .

Для самостоятельного изучения:

Перечень литературы, на которую имеются ссылки

1. Шпиганович, А. Н. Электрика предприятий, организаций и учреждений. Электрическое освещение и сети [Текст]: учебник в 2 т. Т. 1. Осветительные приборы и сети / А. Н. Шпиганович, В. И. Зацепина, Е. П. Зацепин. – Липецк: Издательство ЛГТУ, 2009. – 320 с.

2. Козловская, В. Б. Электрическое освещение [Текст]: справочник / В. Б. Козловская, В. Н. Радкевич, В. Н. Сацукевич. – Минск: Техноперспектива, 2007. – 255 с.

3. Кнорринг, Г. М. Справочная книга для проектирования электрического освещения [Текст] / Г. М. Кнорринг, И. М. Фадин, В. Н. Сидоров. – СПб.: Энергоатомиздат. Санкт-Петербургское отд-ние, 1992. – 448 с.

PAGE 9

Другие похожие работы, которые могут вас заинтересовать.вшм>

12946. Поглощение света 344.66 KB
Способность вещества поглощать свет зависит от ряда факторов: электронного строения атомов и молекул, концентрации поглощающих центров, толщины поглощающего слоя и т.д. Впервые этот эффект был изучен Пьером Бугером в 1729 г., который определил количество света, теряющегося при прохождении определенного пути в атмосфере. Как экспериментально установлено Иоганом Ламбертом
6060. Дифракция света 116.32 KB
Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. Вторичные источники являются когерентными между собой поэтому возбуждаемые ими вторичные волны интерферируют при наложении. Вторичные волны излучаются только открытыми участками волновой поверхности в случае если часть этой поверхности закрыта непрозрачным экраном. Волновые поверхности такой волны симметричны относительно прямой.
17401. Действие света 190.55 KB
Ежедневно мы подвергаемся действию солнечного света и света от искусственных источников. Однако помимо зрения под действием света в нашем организме осуществляются многие другие очень важные фотобиологические процессы о протекании большинства которых мы не всегда даже догадываемся. Некоторые фотобиологические процессы хорошо знакомы каждому: все мы обгорали под действием солнечного света после чего развивались стойкое покраснение кожи эритема и загар.
2128. 49.77 KB
Источниками внешних электромагнитных влияний на сооружения связи являются: атмосферное электричество гроза линии электропередачи ЛЭП электрифицированные железные дороги эл. Под действием внешних электромагнитных полей в сооружениях связи могут возникать напряжения и токи: опасные при которых появляются большие напряжения и токи угрожающие жизни обслуживающего персонала и абонентов или приводящие к повреждению аппаратуры и линейных сооружений. Опасными...
13529. ПАРАМЕТРЫ ВЗАИМОДЕЙСТВИЯ КВАНТОВ СВЕТА (ЭЛЕКТРОМАГНИТНЫХ ВОЛН) И ВЕЩЕСТВА 459.29 KB
Будем для определенности считать что это уровни энергии электронов в атоме а не уровни энергии атома. Так как в единицу времени переходов сверху вниз будет а снизу вверх то полное изменение числа квантов в единицу времени потому что согласно расчетам Эйнштейна что будет доказано позднее в разд. Очевидно что вероятность имеющая размерность пропорциональна числу падающих квантов или с учетом волновых представлений потоку мощности в волне. Для того чтобы определить вероятность обратимся к анализу нестационарных процессов в...
15921. Электрические станции 4.08 MB
Под энергосистемой понимают совокупность электростанций электрических и тепловых сетей соединенных между собой и связанных общностью режима в непрерывном процессе производства преобразования и распределения электрической энергии и тепла при общем управлении этим режимом...
8459. Электрические колебания 414.94 KB
Период колебания такого тока много больше времени распространения что значит что процесс за время τ почти не изменится. Свободные колебания в контуре без активного сопротивления Колебательный контур – цепь из индуктивности и емкости. Найдем уравнение колебания.
2354. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ СПЛАВОВ 485.07 KB
Преимущества меди обеспечивает ей широкое применение в качестве проводникового материала следующие: Малое удельное сопротивление. Интенсивное окисление меди происходит только при повышенных температурах. Получение меди. Зависимость скорости окисления от температуры для железа вольфрама меди хрома никеля на воздухе После ряда плавок руды и обжигов с интенсивным дутьем медь предназначаемую для электротехнических целей обязательно подвергают электролитической очистке полученные после электролиза катодные пластины...
2093. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕПЕЙ КАБЕЛЬНЫХ ЛИНИЙ СВЯЗИ 90.45 KB
Эквивалентная схема цепи связи R и G обусловливают потери энергии: первый потери на тепло в проводниках и других металлических частях экран оболочка броня второй потери в изоляции. Активное сопротивление цепи R складывается из сопротивления проводников самой цепи и дополнительного сопротивления обусловленного потерями в окружающих металлических частях кабеля соседние проводники экран оболочка броня. При расчете активного сопротивления обычно суммируются...
2092. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВОЛОКОННО-ОПТИЧЕСКИХ КАБЕЛЕЙ СВЯЗИ 60.95 KB
В одномодовых световодах диаметр сердечника соизмерим с длиной волны d^λ и по нему передается лишь один тип волны мода. В многомодовых световодах диаметр сердечника больше длины волны d λ и по нему распространяется большое число волн. Информация передается через диэлектрик световод в форме электромагнитной волны. Направление волны осуществляется за счет отражений от границы с разными значениями показателя преломления у сердечника и оболочки п1 и п2 световода.

Фабрика iGuzzini известна на светотехническом рынке уже более 50 лет. В 1958 году это была маленькая итальянская мануфактура, производившая светильники и люстры под брендом Harvey Creazioni. Сегодня торговая марка iGuzzini является лидирующей в секторе технического освещения. Каждый реализованный проект - своеобразный этап развития фабрики.

Компания Mаssive (Массив) была основана в 1926 году как литейный завод по изготовлению бронзовых люстр. С момента создания, её мастерами осуществлялось традиционное литейное производство люстр из бронзы. На сегодняшний момент бренд Mаssive (Массив) занимает лидирующие позиции в линейке Philips Consumer Luminaires и ассоциируется, в первую очередь, с инновационными способами производства.

История Philips начинается в 1891 году, когда Антон и Жерар Филипс учредили компанию Philips & Co. в Эйндховене, Нидерланды. Компания наладила выпуск ламп накаливания и к концу века стала одним из крупнейших производителей в Европе. Промышленная революция в Европе послужила толчком к созданию первой научно-исследовательской лаборатории Philips, на счету которой появились открытия в области рентгеновского излучения и радиовещания. С годами список изобретений неуклонно рос, некоторые из них произвели переворот на рынке, качественно улучшив повседневную жизнь людей.

Польская компания Lena Lighting (Лена Лайтинг) - предприятие с двадцатилетним опытом работы, сумевшее не только насытить отечественный рынок высококачественными светильниками самых разнообразных модификаций, но и удачно развить международное сотрудничество. Уже на протяжении многих лет Lena Lighting является одним из ведущих изготовителей профессиональных светильников, экспортируемых более чем в 38 стран мира. Более того, на сегодняшний день значительная доля европейского рынка осветительных устройств для внутреннего и наружного оформления принадлежит этому скромному предприятию из города Sroda Wielkopolska.

Идея создания компании Fagerhult принадлежит Бертилю Свенссону, который в 1945 году открыл в городе Фагерхальт (Швеция) небольшое предприятие по производству осветительных приборов со штатом из шести сотрудников. Уже через год объём продаж компании вырос с 13000 до 53000 шведских крон. Место расположения предприятия до сих пор не изменилось за исключением того, что его площадь увеличилась почти в 40 раз.

История компании начинается с 1874 года, когда Луис Поулсен начинает свое дело по импортированию вина. Позже он его закрывает и в 1892 году вслед за открытием второй электростанции в Копенгагене открывает фирму по продаже элетроинструментов. С 1896 года управление компанией переходит племяннику - Луису Поулсену. В 1914 году компания Louis Poulsen & Co. публикует свой первый каталог с товарами. С 1924 году с компанией начинает сотрудничать дизайнер Пол Хеннингсен и побеждает в международной выставке в Париже, завоевав золотую медаль за свой светильник. Позже компания начинает выпускать светильники для здания Форума в Копенгагене, для парка развлечений Tivoli и выпускает новые серии ламп. В 1997 году Louis Poulsen признана ведущей компанией в области светотехники в Дании и одной из лучших в Европе. Компания получила множество престижных наград и разрабатывала светильники для многих известных брендов, а так же для отелей, аэропортов, концертных залов и торговых центров по всему миру.

Предприятие по производству дизайнерских светильников было первоначально основано под названием Валайсинпая почти 40 лет назад, а в 1998 году, в связи с корпоративной сделкой, переименовано в Cariitti Oy. Компания - семейная, и расположена в городе Киркконумми, недалеко от Хельсинки.

С момента основания в 1864 году, компания производит высококачественную продукцию из металла. С 50-х годов компания сконцентрировалась на производстве высококачественных светильников для наружного освещения. Albert является производителем; вся продукция производится на заводе в небольшом немецком городке Фронденберг/Fröndenberg.

Alppilux - основанная на финском капитале компания по производству светильников, занимающаяся развитием и производством высококачественных светильников. Заводы компании расположены в г. Лохья в Финляндия и г. Пайде в Эстонии. Оборот компании составляет около 9,5 миллионов евро, на предприятии работает 50 человек.

Группа Beghelli действует на промышленном рынке с 1982 года в качестве производителя приборов аварийного освещения. С 1990 года выбор продукции в области выпуска аварийных систем и приборов стал очень широк. Сегодня заводы Beghelli, помимо приборов аварийного освещения, занимаются производством приборов дистанционного вызова помощи, обнаружения газовых утечек, систем охранной сигнализации и бытовых электронных приборов.

История компании RZB (РЗБ, Rudolf Zimmermann Bamberg) началась в 1939 году, в Германии. Рудольф Циммерманн начал свой бизнес с производства автоматических выключателей, предохранителей и компонентов для распределительных щитов. Непосредственно светильники занимали лишь малую часть оборота компании. Вторая мировая война существенно затормозила развитие компании, и следующий шаг по расширению бизнеса был сделан только через десять с лишним лет, в 1948 году: RZB начинает осваивать производство светильников из стекла, постепенно увеличивая долю этих светильников в общем обороте компании.

Электрические осветительные приборы состоят из:

  • источника света,
  • крепежной (электроконтактной) арматуры,
  • отражателя (рассеивателя) светового потока.

В качестве источника света могут использоваться электрические лампы различной конструкции, как альтернатива им последнее время все чаще начинает использоваться светодиодное освещение , где источником света являются полупроводниковые элементы - светодиоды.

Несмотря на разнообразие конструкций и принципов действия, источники света обладают рядом общих характеристик к которым, наряду с напряжением питания, можно отнести:

  • световой поток,
  • световую отдачу,
  • освещенность,
  • цветовую температуру,
  • цветовую передачу.

ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ СВЕТОВЫХ ПРИБОРОВ

Здесь перечислены и будут рассмотрены параметры, представляющие практический интерес для выбора того или иного осветительного прибора или источника света.

Световой поток - это мощность светового (оптического) излучения, измеряемая в люменах (лм). Опуская теоретические выкладки и определения скажу на чисто бытовом уровне - это количество света, излучаемого источником, чем он больше, тем свет ярче. Сказанное весьма абстрактно, пока что никакой пользы для себя извлечь из этого мы не можем, поэтому пойдем дальше.

Световая отдача . Определяет способность источника света преобразовывать электрическую энергию в световую, измеряется люмен/ватт (лм/Вт), являясь по сути своей коэффициентом полезного действия.

Идеальный источник способен отдавать 683 лм/Вт, на практике эта величина, естественно меньше. Для ламп накаливания, например, световая отдача составляет 10-15, люминесцентных ламп до 75, мощных светодиодов более 100 лм/Вт.

Это уже нечто. Поскольку все хорошо представляют лампу накаливания мощностью 100 Вт, то теперь могут представить себе световой поток 1200 Лм, который она излучает. Кроме того, этот показатель позволяет оценить уровень энергосбережения. Очевидно, что при одинаковой светоотдаче люминесцентная лампа потребляет электрической энергии в 4-5 раз меньше, чем лампа накаливания.

Освещенность . Этот параметр характеризует величину светового потока, приходящегося не единицу площади. Измеряется в люксах (лк). 1лк=1лм/1м.кв. Освещенность зависит от конструкции отражателя, расстояния до источника света, их количества. Для оценки - нормальная освещенность для чтения составляет 500 лк. Освещенность в летний солнечный день на широте Москвы может достигать 100000 лк, а в полнолуние - до 0,5 лк.

Цветовая температура . Излучение определенного цвета характеризуется длиной волны. Видимое излучение красного цвета имеет наименьшую длину волны, синего - наибольшую. Если упростить до предела, то цветовая температура характеризует цвет излучения. Это очень примитивно, но нам достаточно. Измеряется в градусах Кельвина (0 К). Опять же, пример, как визуально воспринимается свет различной температуры:

  • тепло белый - порядка 3000-3300 0 К,
  • нейтральный белый - 3300-5000 0 К,
  • холодный белый - более 5000 0 К.

Индекс цветопередачи Ra . Является показателем естественности воспринимаемых цветов. Чем большее значение этого индекса имеет осветительный прибор (источник света), тем цветопередача лучше. Индекс цветопередачи 70-100 характеризует цветопередачу от хорошей (70) до отличной (90-100).

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Жизнь современного человека немыслима без использования электроэнергии. На сегодняшний день основная масса источников света - электрические. Около 15% общего количества вырабатываемой электроэнергии расходуется осветительными приборами. Чтобы снизить энергопотребление, повысить светоотдачу и увеличить срок эксплуатации источников света, необходимо использовать наиболее экономные источники света, постепенно отказавшись от более старых и неоправданно энергозатратных аналогов.

Осветительные лампы

Рассмотрим общепринятую классификацию. На основании принципов действия электроприборов в выделяют следующие типы осветительных накаливания, в том числе галогенные лампы накаливания и разрядные лампы, а также светодиодные, которые за последние несколько лет становятся все более популярными.

Стоит отметить, что электролампы различаются по форме, размеру, количеству потребляемой энергии и теплоотдачи, сроку эксплуатации, стоимости. Итак, рассмотрим осветительные более детально и определим преимущества и недостатки каждого вида.

Типы ламп

Какая из ламп самая дешевая и простая в эксплуатации? Это всем знакомая лампа накаливания осветительная - ветеран в работе многочисленных бытовых электроприборов. Невысокая цена и легкость в эксплуатации делают их популярными уже не одно десятилетие. Им не страшны перепады температур, они мгновенно зажигаются и не содержат опасных паров ртути.

Производят лампы различной мощности от 25 до Правда, количество рабочих часов у таких ламп невысокое, всего 1000, а потребление электроэнергии намного выше, чем у энергосберегающих аналогов. Со временем за счет выделяемых при работе паров стекло лампы мутнеет и теряет яркость. Потому они невыгодны, и со временем от них отказываются. Так, во многих странах Европы их производство и продажа прекращены и запрещены законодательством.

Рефлекторные лампы

Нашли свое применение и рефлекторные лампы накаливания. Они во многом напоминают обычную лампу накаливания, единственное отличие - посеребренная поверхность. Используется это для того, чтобы создать направленное освещение в определенную точку, к примеру, на витрине или рекламном щите. Маркируют их R50, R63, и R80, где цифра указывает на диаметр. Они просты в применении, снабжены резьбовым цоколем стандартных размеров Е14 или Е27.

Люминесцентные лампы

Как известно, для работы осветительных приборов необходимо около 15% всей вырабатываемой электроэнергии. Согласитесь, ведь это очень много. Для сокращения этого показателя необходим переход на более экономные источники света. Согласно действующему законодательству, с 2014 года мощность осветительных ламп не должна превышать 25 Вт. На смену привычным лампам накаливания пришли энергосберегающие люминесцентные, которые потребляют в пять раз меньше электроэнергии, при этом уровень освещения остается прежним. Что они собой представляют? Это стеклянная колба белого цвета, покрытая с внутренней стороны люминофором и содержащая инертный газ с небольшим количеством паров ртути. Столкновение электронов с парами ртути дает ультрафиолетовое излучение, а оно, в свою очередь, за счет люминофора преобразуется в свет, который мы привыкли видеть.

Срок эксплуатации таких ламп - около года, или 10 000 часов непрерывной работы. Но осветительные лампы такого типа имеют один существенный недостаток: они содержат ртуть. Поэтому они требуют очень аккуратного использования и специальных условий утилизации. Их нельзя ронять или просто выбросить в мусорный бак - ведь, как известно, пары ртути даже в малых количествах очень опасны. К тому же, попадая в воздух, они не растворяются, а зависают, отравляя все вокруг. Так, количество паров ртути от одной разбитой лампы примерно 50 мг 3 при допустимом уровне концентрации паров 0,01 мг/м 3 .

Еще один недостаток таких светильников: цвет некоторых из них неприятен для глаз, их освещение достаточно агрессивное. Выход есть: при выборе лампы следует учитывать ее цветовую температуру. Она измеряется в Кельвинах (К). Так, более мягкий, теплый оттенок дают лампы с пометкой 2700К - 3000К, именно этот показатель наиболее оптимален для человеческих глаз при работе в помещениях, так как наиболее приближен к естественному солнечному освещению.

Применение ламп дневного освещения

Среди огромного количества электроламп существуют те, основная задача которых - работать непрерывно много часов подряд. Используются они в помещениях определенного типа: больницах, супермаркетах, складах, офисах. Считается, что их свет наиболее приближен к естественному, отсюда и название: лампы дневного освещения.

Лампы производят в форме удлиненной стеклянной трубки с контактными электродами по краям. Они нашли применение и в домашних условиях. Используются они как основной источник света на потолке или крепятся на стенах в качестве дополнительного. Очень удобны, например, на кухне, над рабочей поверхностью, когда необходимо направленное освещение, или в качестве декоративной подсветки в нишах, под полочками и картинами, для освещения аквариумов или подогрева комнатных растений в холодное время года. Работают они от обычной сети и не требуют специальных преобразователей тока. Такие светильники считаются энергосберегающими, так как по сравнению с лампой накаливания старого образца они практически не нагреваются, потребляют до 10 раз меньше энергии, а срок эксплуатации их составляет около 10000 часов непрерывной работы. Но есть один нюанс: такое освещение обычно используют внутри помещения при температуре 15-25 градусов. При более низких температурах они просто не станут работать. Кроме белого и желтого, такие лампы могут излучать и другие оттенки: голубой, красный, зеленый, синий, ультрафиолетовый. Выбор цвета зависит от назначения и области применения.

Галогенные лампы

На сегодняшний день применяется не один вид ламп, потребляющих в два раза меньше электроэнергии, чем их предшественники. Такие лампы относят к классу энергосберегающих. Это галогенные осветительные лампы, широко используемые в повседневной жизни. Благодаря компактным размерам их удобно использовать в осветительных приборах типа торшера, бра, потолочных светильниках с нестандартным плафоном, для декоративной встроенной подсветки.

Для заполнения колбы такой лампы используют смесь специальных газов с парами брома или йода. При подключении прибора к сети нить накала (вольфрамовая спираль) разогревается и дает свечение. В отличие от обычной электрической лампочки, здесь вольфрам при нагреве не оседает на стенках колбы, а в соединении с газом дает более яркое и длительное свечение, до 4000 часов. Такие светильники излучают ультрафиолетовые лучи, что очень вредно для глаз. Поэтому качественные лампы имеют специальное защитное покрытие. Они очень чувствительны к перепадам напряжения и очень быстро могут выйти из строя.

Энергосберегающие лампы

Универсальным и энергоэффективным источником света на сегодняшний день считаются те из них, которые для работы используют в несколько раз меньше энергии, при этом не уменьшая мощности вырабатываемого потока. Как, например, энергосберегающие лампы, предназначенные для жилых и офисных помещений. Они универсальны и могут быть использованы в осветительных приборах разных типов.

Характеристика осветительных ламп такого типа: потребление электроэнергии в несколько раз ниже, чем у ламп накаливания, служат до 10 раз дольше, не нагреваются, не мерцают, не гудят, достаточно прочные и не содержат опасных компонентов.

Из недостатков можно выделить следующие: медленный разогрев (до 2 минут), работа при температуре не ниже 15 градусов. Их нельзя использовать на улице в открытых светильниках.

Основные преимущества светодиодов

Но одними из наиболее выгодных в плане экономии энергии считаются светодиодные или LED-лампы. В переводе с английского LED - light emittingdiode - «светоизлучающий диод». Светоотдача таких ламп 60-100 Лм/Вт, а средний срок службы составляет 30 000-50 000 часов. При этом современные осветительные лампы этого типа не нагреваются и совершенно безопасны в эксплуатации. Ну а если перегорит одна из лампочек, это не отразится на работе всего механизма, он продолжит работу.


Цветовая температура у них довольно разнообразна - от мягкого желтого до холодного белого. Выбор цвета зависит от использования помещения и предпочтений хозяина. Так, например, для офиса лучше выбрать яркий белый с отметкой 6400К, для детской комнаты подойдет естественное освещение, не такое агрессивное, 4200К, ну а для спальни - немного желтоватый оттенок, 2700К.

И еще один плюс: они лишены основного недостатка люминесцентных ламп: гудения и мерцания, а глазам при таком освещении очень комфортно. Работают они от обычной сети 220 Вт и снабжены стандартным цоколем Е27 и Е14.

Использование светодиодов в быту

Интересно, что еще десяток лет назад даже не существовало такого понятия, как светодиодные лампы для дома. Как выбрать и установить их, мог подсказать разве что автомеханик - ведь использовались они в основном на приборной доске автомобиля и световых индикаторах. Сегодня же эксплуатация их в домашних условиях стала настолько привычной, что мы даже не задумываемся о выборе между LED-светильниками и лампами старого образца, настолько выбор очевиден и не в пользу последних. Основной момент: в светодиодных лампах ток - величина постоянная, поэтому затраты на нагревание минимальны. Следовательно, они не нагреваются и, как и лампы дневного освещения, могут служить много лет подряд. Даже несмотря на их высокую стоимость, они выгодны в использовании. Потребляя меньше энергии, такие лампы помогают снизить ежемесячную сумму оплаты за электричество. Кстати, выбирая светодиодные лампы для дома, следует учитывать такую разницу в мощности. Есть один секрет. Нужно знать мощность, которую потребляет осветительная лампа общего назначения, и разделить ее на 8. Например, если менять обычный светильник в 100 Вт, то 100: 8 = 12,5. Значит, нужна светодиодная лампа мощностью от 12 Вт.

Еще один не менее важный показатель - такие светильники имеют разную От этого показателя зависит, насколько комфортное освещение даст светодиодная осветительная лампа в помещении. Из существующих оттенков белого света наиболее оптимальным является оттенок в диапазоне 2600-3200 К и 3700-4200 К. Такой свет мягкий, наиболее приближен к естественному солнечному освещению и приятен для глаз. Показатель 6000 К дает очень холодный белый оттенок, а менее 2600 К - гнетущий желтый. Такие оттенки вредны для глаз, человек быстро устает, могут появиться головные боли и ухудшиться зрение. Поэтому очень важно приобретать только качественные подскажет консультант в магазине, а также предоставит все необходимые сертификаты качества.

Как ни крути, а светодиодная лампа выгодна во многих отношениях.

Она потребляет в несколько раз меньше электроэнергии.

В процессе работы не нагревается, что дает возможность использовать ее с легковоспламеняющимися материалами, например, в карнизах, фальш-потолке. Большое количество таких ламп не перегревает воздух в помещении.

Такие лампы не перегорают, а со временем лишь теряют свою яркость, примерно до 30%.

Долгий срок эксплуатации, до 15 лет.

Итак, имея представление о том, какие виды лампочек бывают, зная их основные характеристики, достоинства и недостатки, можно смело отправляться в ближайший магазин. Но есть еще один немаловажный момент, без которого даже простая замена перегоревшей лампы будет невозможна. Ведь чтобы подобрать лампу к осветительному прибору, нужно знать, какого вида ее цоколь. При помощи цоколя лампа крепится к патрону, и именно он подает электрический ток в лампочку.

Правильно подбираем цоколь

Для изготовления цоколя используют металл или керамику. А внутри помещены контакты, передающие электрический ток в рабочие элементы устройства. Каждый осветительный прибор оснащен одним или несколькими патронами для крепления ламп. Важно, чтобы цоколь приобретаемой лампы соответствовал патрону. Иначе она не будет работать.

Несмотря на многообразие видов цоколей электроламп в повседневной жизни чаще используют два вида: резьбовой и штырьковый.

Резьбовой цоколь еще называют винтовым. Название точно передает способ соединения его с патроном осветительного прибора. Его ввинчивают в осветительные лампы, для этого на его поверхности нанесена резьба. Для маркировки используют букву Е. Этот тип применяется во многих видах ламп в бытовых приборах. Такие цоколи различаются размером. Так, маркируя цоколь, после латинской буквы Е производитель обязательно указывает диаметр резьбового соединения. В быту чаще всего используют цоколи двух размеров - Е14 и Е27. Но существуют и более мощные осветительные лампы, например, для уличного освещения. В них используют цоколь Е40. Размер резьбовых соединений остается неизменным на протяжении многих десятков лет. Даже сейчас можно без труда заменить перегоревшую обычную лампочку в старинной люстре на более экономную, светодиодную. Размеры цоколя и патрона у них точно совпадают. Но в Америке и Канаде приняты другие параметры. Так как напряжение в сети у них 110В, то во избежание использования лампочек европейского образца диаметр цоколя отличается: Е12, Е17, Е26 и Е39.

Еще один вид цоколей, применяемых в быту, это штырьковой. К патрону он крепится при помощи двух металлических штырьков. Они выполняют роль контактов, передающих электричество в лампочку. Штырьки отличаются диаметром и расстоянием между ними. Для маркировки используют латинскую букву G, за ней следует цифровое обозначение промежутка между штырьками. Это G9 и G13.

Вот теперь можно смело приступать к ремонту. И пусть перепланировка или постройка новых стен под силу лишь специалистам, но с выбором и заменой электроламп вы вполне справитесь самостоятельно.

Все мы ежедневно, не задумываясь, пользуемся такой замечательной вещью, как электрическое освещение. Лампы стали для нас такой же неотъемлемой частью быта, как зубные щетки, но мало кто помнит и знает о том, как в действительности происходило развитие приборов освещения, чей вклад в становление электроэнергетики самый значительный, и о том, как американцы в очередной раз «нагрели руки» на изысканиях всего человечества.

Итак, тема сегодняшнего повествования – это история освещения, как она есть, с озвучиванием фактов и дат, за которыми кроются великие открытия и неустанный труд великих изобретателей.

Как и любая историческая тема, развитие электричества будет невозможно уместить в полном объеме в обычной статье. Но мы постараемся упомнить самые важные вехи данного процесса, и вспомним ученых, которые дни и ночи напролет делали свою работу, чтобы сегодня мы с вами: ездили на авто, смотрели телевизор, пользовались смартфонами и освещали свое жилище по ночам.

Игра с огнем

Принято считать, что первым источником огня для древнего человека (назовем его Укротителем) стала молния, ударявшая по деревьям и воспламеняя их. Любопытный и смелый Укротитель приблизился к костру и почувствовал тепло, которое он дает.

Тогда у Укротителя мелькнула мысль (напомним, что сегодня ученые склонны считать, что у древнего человека мозг работал намного лучше, чем у его современника, так как ему постоянно приходилось решать проблему выживания, что делало его ум острым и быстрым), почему я мерзну по ночам в своем убежище, ведь можно его обогреть. Он взял горящую ветку, и радостный побежал домой.

С тех пор Укротитель и все его многочисленные родственники и потомки научились не только греться у костра, но и готовить на нем вкусную горячую пищу, освещать им пространство вокруг себя, найти ему религиозное применение, а самое главное – самостоятельно разжигать пламя, так как новая молния может не ударить поблизости годами, а то и десятилетиями.

Приспособления для огня также изменялись со временем:

  • Первоначально огонь горел посреди каменной пещеры, равномерно нагревая и освещая пространство вокруг себя.
  • Затем костер поместили в специальное место, названное очагом, чтобы защитить себя и маленьких детей от ожогов и травм.

  • На Руси придумали использовать в качестве источника света зажженную щепу, называемую лучиной. Принцип весьма прост – ее закрепляли под углом на подставке с металлическим наконечником (светец) и поджигали нижний конец. Под огонь ставили металлический лист или сосуд с водой, чтобы уберечь дом от пожара.
  • Люди со временем стали открывать все новые вещества, которые могут поддерживать горение. В ход пошли различные масла и смолы, благодаря которым появились новые источники освещения – масляные горелки и факелы.

  • Теперь стало намного проще освещать большие пространства. Лампы горели долго, и давали хоть и тусклое, но равномерное освещение. Спустя много лет такие горелки стали применять и для уличного освещения.

  • В царских замках и городских ратушах появились специальные служащие, ответственные за горение таких ламп.

  • Но история развития освещения огнем на этом не остановилась. Через много тысяч лет появились жировые свечи. Свойства горения жира стали известны человеку, еще задолго до этого, просто найти практическое применение этой информации ранее не получалось. Автор статьи даже представить себе не может, сколько потребовалось времени и усилий, чтобы додуматься, что тонкую палочку нужно окунуть в растопленный жир и дать ему затвердеть. Воистину, человеческие ум и усердие безграничны!

  • На этом использование огня, как источника света не заканчивается. В 1790 году французский инженер Филипп Лебон начал работать над процессами перегонки сухой древесины и вскоре смог выделить газ, горение которого было намного ярче, чем у любого другого на тот день светового прибора. Некоторое время он продолжал свои эксперименты, усовершенствуя процесс, и вскоре свет увидел первый газовый рожок, на который Филипп получил патент.

  • Первой в мире улицей, освещенной газовыми горелками, считается лондонская Пэлл Мэлл – в 1807 году король Георг IV распорядился об этом, так как улица считалась самой оживленной и требовала регулировки движения.

  • В Россию газовое освещение улиц и площадей попало спустя более 50-ти лет – на улицах Петербурга и Москвы такие фонари появились в 60-х годах 19 века.

Газовое освещение стало настоящим переворотом в науке и технике того времени. Первые горелки были далеки от совершенства и частенько становили причиной пожаров, но со временем их конструкция дорабатывалась, и они продолжали служить человеку. Такие светильники использовались еще очень долго, даже после появления электрического света.

Электричество и освещение на нем

Ну вот, мы и добрались до самого интересного – и это история электрического освещения. Трудно переоценить роль электрического света в жизни современного человека, так как на нем завязано абсолютно все! Сегодня отсутствие лампочки в подъезде – это настоящая трагедия для его жильцов.

Итак, сама история как наука вызывает много вопросов. Многие современные авторитетные ученые склонны считать, что историческая действительность далека от той, которую нам преподают сегодня в школе.

Мы оставим дискуссии по этому вопросу для профессионалов, нас же интересует история создания электрического освещения, которую можно смело назвать достоверной, так как она, по большей части, развивалась в последние 250 лет, и не отдалена от нас пылью времен.

Основные исторические вехи эры электричества и эпилог

Прежде всего, подробнее опишем проникновение электрического света в нашу жизнь и вспомним обо всех основных событиях и открытиях, которые способствовали приходу и развитию такого освещения. Мы расскажем о видных ученых, имена которых несправедливо забыты на сегодняшний день.

  • 1780 год – созданы водородные лампы, в которых впервые за всю историю для розжига используется электрическая искра.
  • 1802 год – открыто свечение накаленной проволоки из платины и золота.

  • 1802 год – русский ученый, физик-экспериментатор Василий Владимирович Петров, самостоятельно обучавшийся электротехнике, открывает явление электрической дуги между двумя угольными стержнями. Помимо светового излучения, он открывает и доказывает практическое применение данного эффекта для сварки и плавки металлов, а также восстановления их из руд. Петров делает еще ряд важных открытий, поэтому он по праву называется отцом отечественной электротехники.
  • 1802 год – В.В. Петров открывает эффект свечения тлеющего разряда.
  • 1820 год – английский астроном Уоррен де ла Рю демонстрирует первую из известных ламп накаливания.

  • 1840 год – немецкий физик Уильям Роберт Грове впервые применяет для разогрева нити накаливания электрический ток.

  • 1841 год – английский изобретатель Ф. Молейнс патентует свою лампочку, в которой светился порошковый уголь, помещенный между двумя платиновыми стержнями.
  • 1844 год – Американский ученый Старр пытается создать лампы с угольной нитью, но результаты его опытов неоднозначны.
  • 1845 год – в Лондоне Кинг получает патент на применение нитей накаливания из угля и металла для освещения.

  • 1854 год – Генрих Гебель, находясь в Америке, впервые создает лампу с тонкой угольной нитью. Ей он освещает витрину своего магазина, в котором он продавал сделанные им часы.
  • 1860 год – в Англии появляются первые газоразрядные ртутные трубки.

  • 1872 год – русский электротехник Лодыгин демонстрирует свои лампы накаливания, освещая ими аудитории технологического университета в Петербурге по улице Одесской. Спустя два года он получает патент на свое изобретение сразу в нескольких странах.
  • 1874 год – Павел Николаевич Яблочков, русский военный инженер, электротехник и предприниматель создает первую установку в мире для освещения железной дороги электрическим прожектором, установленным на носу локомотива.

  • 1876 год – П.Н. Яблочков изобретает свечу из двух угольных стержней разделенных диэлектриком (каолином). Данное изобретения стало переворотом в электротехнике и стало использоваться повсеместно для освещения городов. Подробнее поговорим об этом в следующей главе.
  • 1877 год – Макссим, американский изобретатель, делает лампу из платиновой ленты без прозрачной колбы.
  • 1878 год – Сванн, английский ученый, демонстрирует свою лампу с угольным стержнем.

Позволим себе небольшое лирическое отступление. Где же во всей этой череде открытий спрятался всем известный изобретатель Томас Эдисон?

Несмотря на то, что сам Эдисон провел своими руками около 1200 опытов с лампами, его можно скорее назвать талантливым предпринимателем, сумевшим доработать конструкцию ламп. Дело в том, что основные эффекты и типы ламп на тот момент уже были изобретены.

Эдисон скупает все необходимые патенты, объединяет технологии и изобретает патрон для ламп накаливания, который нам знаком и по сей день. Мы не умаляем заслуг знаменитого американского изобретателя, просто несправедливо считать, что лампа накаливания – это только его рук дело.

В лампах Эдисона используется тот же принцип, что и в свечах Яблочкова, с той лишь разницей, что вся конструкция помещена в вакуумную колбу, благодаря чему лампа стала работать намного дольше.

В 1880 году Томас Эдисон получает патент на свое изобретение и начинает массовое производство, которое набирает обороты год от года. Эдисон стал богачом, тогда как Яблочков умирает в 1894 году в Саратове в нищете.

  • 1897 год – немецкий ученый Вальтер Нернст создает лампы накаливания с металлический нитью. За основу взята лампа Эдисона.
  • 1901 год – начало 20 века. Купер-Хьюит изобретает ртутную лампу низкого давления.

  • 1902 год – русских ученый германского происхождения Больтон использует для нити накаливания тантал.

  • 1905 год – Ауэр использует для нити накаливания вольфрам и осмий.
  • 1906 год – Кух изобретает ртутную лампу высокого давления.
  • 1920 год – открыт галогенный цикл.
  • 1913 год – Лангье изобретает газонаполненную лампу с вольфрамовой спиралью.

На фото — натриевая лампа низкого давления

  • 1931 год – Пирани представляет свою натриевую лампу низкого давления.
  • 1946 год – Шульц создает ксеноновую лампу. В этом же году появляется ртутная лампа высокого давления с люминофором.
  • 1958 год – создаются первые галогенные лампы накаливания.
  • 1960 год – ртутные лампы высокого давления и с йодистыми добавками.
  • 1961 год – изобретена первая натриевая лампа высокого давления.

  • 1962 год – Ник Холоньяк создает для компании General Electric первый видимый светодиод. Кстати, данная компания основана еще Томасом Эдисоном.
  • 1982 год – теперь галогенная лампа может работать на низком напряжении.
  • 1983 год – люминесцентные лампы становятся компактными.
  • 2006 год – появления на рынке светодиодных ламп для домашнего пользования.

На самом деле перечисленный список далеко не полон. В него можно было включить еще открытия многих эффектов, но у нас, к сожалению, ограничено место, и мы выбрали самые на наш взгляд важные.

Если же вам интересно погрузиться в данный вопрос глубже, то ищите информацию в интернете или в научных справочниках.

Роль Яблочкова в развитии электроэнергетики

Как же не поговорить о самом электричестве, и открытиях связанных с ним. Первые опыты ученых начались еще в далеком 1650 году. Именно с тех пор многие ученые «заболели» этим вопросом, и результатом их трудов стало создание электрических механических машин.

Начиная с середины 19 века наметился рост применения электрических двигателей. Техника с таким приводом начала понемногу вытеснять паровые машины.

Этому немало способствовало внедрение в производство, так называемой «свечи Яблочкова». Ни одно изобретение до этого не получало такого быстрого и широкого распространения.

Это был настоящий триумф русского изобретателя, которому принадлежит и очень много других открытий:

  • Яблочков придумал способ, как подключать к источнику питания произвольное количество ламп. До него до этого не додумался никто, и каждая лампа запитывалась отдельной динамо-машиной.
  • Петр Николаевич придумал и собрал первый трансформатор электрического тока.
  • Яблочков научился применять переменный ток, что до него считалось опасным и не находящим практического применения.
  • Создал первый генератор переменного тока.
  • Он придумал еще несколько источников света.
  • Создал множество электрических машин.
  • Изобрел первый гальванический автомобильный аккумулятор.

Сегодня многие идеи, озвученные талантливым русским ученым, находят новое применение в электротехнике, но начал он свою карьеру с того, что попытался усовершенствовать регулятор Фуко, распространенный в то время.

В 1974 году из Москвы в Крым должен был отправиться правительственный поезд, и администрация Московско-Курской железной дороги решила осветить проезд в целях повышения безопасности. Они обратились к Яблочкову, который, как ходили слухи, интересовался электрической энергией.

Яблочков размещает на локомотиве свой прожектор, работающий по принципу образования электрической дуги. Дуговую лампу нужно было постоянно регулировать из-за того, что электрическая дуга возникала лишь при соблюдении определенного расстояния между угольными стержнями. Сами же стержни во время работы выгорали, поэтому и требовался регулирующий механизм, который с нужной скоростью будет двигать стержни навстречу друг другу.

Результат эксперимента показал, что конструкцию регулятора нужно упрощать, так как она требовала к себе постоянного внимания, и Яблочков стал думать над этой проблемой. Попутно он проводил опыты по электролизу раствора поваренной соли.

По ходу одного из таких экспериментов, параллельно расположенные угли в солевом растворе коснулись друг друга, и моментально вспыхнула яркая электрическая дуга. Тут-то, принцип работы лампы без регулятора и пришел ученому в голову.

В 1975 году Яблочков везет в Париж сделанную им динамо-машину и подает заявку на патент. В докладе на заседании Французского общества физиков он сообщил принципы работы своего изобретения и продемонстрировал их в действии.

15 апреля 1876 года, находясь в Лондоне, Яблочков публично демонстрирует работу своей свечи на выставке физических приборов. Многочисленная публика была в восторге. Именно эта дата считается триумфальной в биографии ученого.

Далее следует быстрое распространение новинки, но в 1881 году миру была представлена лампа накаливания, которая могла работать до 1000 часов. Новинка была намного экономичнее, поэтому цена использования электроэнергии стала заметно меньше.

Современные лампы для освещения

Как ни странно, но сегодня мы по-прежнему пользуемся и лампами Эдисона и «свечами Яблочкова». И если первые доживают свой век, вытесняемые люминесцентными и светодиодными аналогами, то вторые получили полное перерождение.

Электрическая световая дуга снова вернулась к нам в виде галогеновых автомобильных ламп. Использование галогенов позволило продлить срок службы нити накаливания. Это же позволило создавать лампы большей мощности.

Конечно, данные лампы изготавливаются по новым технологиям и в них применяются совсем другие материалы, чем 140 лет назад, но основной принцип работы остался тем же, что и раньше.

Чем же мы пользуемся для освещения сегодня? Очень широкое распространение получили люминесцентные лампы. Их используют для уличного освещения, освещения производств, школ, детских садов и дома. В 80-х годах прошлого века такие лампы научились делать компактными, что позволило устанавливать их в люстры и настольные светильники.

По-другому, современные люминесцентные лампы называются энергосберегающими, и это не единственный их плюс:

  1. Применение таких ламп позволило сократить потребление электроэнергии на освещение в 6-7 раз;
  2. Они пожаробезопасны, так как сильно не нагреваются во время работы;

Минусов у таких ламп тоже хватает:

  1. Цена – самый главный из них. Средняя стоимость такой лампы составляет 200-300 рублей, и это относится к низкокачественному сегменту.
  2. Лампы имеют спиралевидную форму, что подходит по эстетическим соображениям не к каждому светильнику. Правда, со временем их научились помещать в дополнительные колбы различной формы.

  1. Утилизация энергосберегающих ламп – это целая проблема, так как в их составе есть ртуть, пары которой считаются очень ядовитыми.

Как вы понимаете, минусы весьма серьезны. Это и подтолкнуло технику к новому скачку – в качестве основного источника света стали применяться светодиоды.

Светодиоды хоть и были открыты еще в середине 20 века, но использоваться, как лампы, они стали лишь в начале 21-го. Причина кроется в том, что светодиоды излучают в очень узком диапазоне, что мешало создать источник света, приемлемый для глаза человека. К тому же данное световое излучение несовместимо с человеческим зрением и способно нанести ему вред.

Все указанные причины потянули за собой долгую стадию разработок, в течение которых большинство получилось разрешить, и с 2006 года светодиоды становятся полноценным источником света.

Их приход ознаменовал следующие выгоды для приобретателей:

  • Расход энергии сократился даже по сравнению с люминесцентными энергосберегающими оппонентами;
  • Тепловыделение таких ламп находится на очень низком уровне и направлено не в сторону излучения, а в цоколь лампы, который все равно холоднее, чем у конкурентов;
  • Длительный срок службы, рассчитанный на многократный цикл включений выключений. По этому параметру ни одна другая лампа не дотягивает до светодиодов;
  • Цветовой спектр – недостаток превратился в преимущество, так как разнообразие цветового излучения стало очень велико;
  • Простая утилизация – чтобы выбросить лампу не нужно беспокоиться о последствиях или бежать в пункт приема;
  • Лампы из светодиодов экологичны – при их работе не выделяется никаких вредных веществ;
  • Корпуса многих светодиодных ламп изготавливают из прочного пластика, способного легко пережить падение с высоты в несколько метров

Но как водится, не обошлось и без минусов, которые мы тоже обязаны озвучить:

  • В некоторых лампочках наблюдается мерцание, невидимое глазу. Это относится к дешевым изделиям из Китая и прочих азиатских стран. Такие лампы способны нанести вред здоровью человека.
  • Те же недорогие изделия могут излучать во вредном для глаз человека спектре.
  • Излучение света у светодиода происходит строго в одном направлении, что делает угол освещенности очень маленьким, по сравнению с оппонентами. Для решения проблемы сконструированы лампы типа «кукуруза», как на одном из фото выше. В них светодиоды располагаются вокруг центрального стержня, чем и напоминают початок культуры, в честь которой названы.
  • Со временем отдельные светодиоды в лампе могут сгорать, что вызывает падение яркости. С одной стороны лампа продолжает работать, но с другой – ее мощности уже может не хватить для комфортного использования, и замена неизбежна.

Раньше к недостаткам можно было отнести и цену светодиодных ламп, но в последнее время они становятся все более доступными. Так, например, неплохая лампа может быть куплена за 150 руб. Продукция известных брендов, типа «Phillips», по-прежнему стоит очень дорого (от 500 до 2000 рублей).

Совет! Ответить на вопрос, какую лампу выбрать сегодня не так-то и просто! Подробнее узнать о современных осветительных приборах поможет видео, которое мы прилагаем к статье.

Отсюда сделаем свой вывод, что эволюция осветительных приборов еще далека от завершения. Но то, что мы используем сегодня уже близко к этому. Кто знает, но может быть завтра, откроют что-то концептуально новое, и светодиоды тоже станут частью истории, но пока, их смело можно назвать вершиной развития приборов освещения.

История развития электрического освещения, кратко описанная в нашей статье, озвучена далеко не полностью. Ее творила не одна тысяча светлых умов, каждый их которых внес свою лепту в это интересное дело. И каким бы мизерным этот вклад не казался, без данного шага могло бы и не быть следующих. Ну, а мы стараемся не забывать свою историю, и рассказываем о ней своим читателям. На этом все! Всего наилучшего!

Лучшие статьи по теме