Вентиляция. Водоснабжение. Канализация. Крыша. Обустройство. Планы-Проекты. Стены
  • Главная
  • Стены 
  • Гомеостаз, сукцессия и устойчивость экосистем. Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный

Гомеостаз, сукцессия и устойчивость экосистем. Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный

Создавая в своих интересах искусственные экосистемы, человек должен следовать объективным закономерностям существования и функционирования природных экологических систем. Естественные экосистемы существуют в течение длительного времени и обладают определенной стабильностью во времени и пространстве. Для поддержания этой стабильности необходимы сбалансированность потоков вещества и энеpгии, процессов обмена веществ между живыми организмами и окружающей средой.

Гомеостаз (греч. homoios – подобный, одинаковый; stasis – стояние) – способность биологических систем противостоять изменениям условий жизни и сохранять состояние равновесия (Состояние подвижно-стабильного равновесия экосистемы) т.е. способность биологического объекта к саморегуляции при изменении условий окружающей среды; для организма сохранение постоянства внутренней среды организма и устойчивость основных физиологических функций при изменении внешних условий.

Экологическое равновесие – это состояние экосистемы, при котором состав и продуктивность биоценоза в любые конкретные моменты времени наиболее полно соответствуют абиотическим (неживым) условиям – почве, климату, наличию влаги.

Живые организмы обладают свойством поддерживать некоторые свои характеристики в допустимых пределах, если изменяющиеся внешние условия не являются катастрофическими. Например, наш организм имеет системы поддерживания достаточно постоянного кровяного давления и температуры.

Обратимые изменения в экосистеме – это изменения экосистемы в течение года, от весны и до весны, при колебаниях климата в разные годы и изменения роли некоторых видов в связи с ритмами их жизненного цикла. При таких изменениях видовой состав экосистемы сохраняется, она лишь подстраивается к колебаниям внешних и внутренних факторов. В отдельные сезоны года некоторые компоненты экосистемы могут отсутствовать или впадать в состояние глубокого покоя: отлет птиц на зиму, захоронение семян в засушливый год, зимняя спячка насекомых и некоторых животных.Экосистемы, как и организмы, способны к саморегулированию и самоподдержанию. Например, численность любой популяции регулируется в таких пределах, чтобы избежать перенаселения экосистемы.Как и в технических системах, в экосистемах осуществляется два вида обратной связи. Положительная обратная связь – это связь, усиливающая отклонение, необходимое для выживания и роста организмов. Отрицательная обратная связь – это связь, ослабляющая действие благоприятных факторов и позволяющая избежать, например, стремительного разрастания популяции того или иного вида организмов.В больших, зрелых экосистемах поддерживается самокорректирующийся гомеостаз в результате взаимодействия круговорота веществ и потока энергии. В связи с этим экосистемы Земли и сама биосфера находятся в устойчивом состоянии.Однако устойчивость экосистем и действие механизмов саморегуляции имеют предел, по достижении которого усиливающиеся обратные связи приводят к гибели системы.

Пороговый эффект малое изменение или воздействие может оказаться критическим и вызвать негативные последствия (если система находится в предпороговой области).

Примеры: массовая гибель деревьев после длительного воздействия загрязненного воздуха; опустынивания территорий; глобальное вмешательство человека в земной круговорот энергии и веществ посредством сжигания все в больших количествах ископаемого топлива.

К какой это приведет экологической катастрофе пока трудно предсказать.

Экосистему можно вывести из состояния равновесия многими способами. Обычно это бывает пожар, наводнение или засуха. После такого нарушения равновесия новая экосистема сама себя восстанавливает, и этот процесс носит регулярный характер и повторяется в самых разных ситуациях.

Что же происходит в нарушенной экосистеме? На месте нарушения определенные виды и вся экосистема развиваются таким образом, что порядок появления этих видов одинаков для схожих нарушений и схожих ареалах. В этой последовательной смене одних видов другими и заключается суть экологической сукцессии.

Например, в большинстве северо-восточных штатов США в XVIII веке земли, занятые лесами, были расчищены, и на этих территориях были построены фермы, в XIX веке продолжалась обработка этих земель, а в ХХ веке фермы были заброшены и участки вновь стали превращаться в леса.

Растения, с течением времени заселившие поля, появлялись в определенной, уже известной и строго повторяющейся последовательности. В первый год вырастали однолетние сорняки и одиночные сеянцы деревьев. В течение нескольких последующих лет происходило заселение определенными видами (это так называемые «пионерные виды», или, выражаясь более научно, ранние сукцессионные виды ), которые начинали преобладать.

Типичный пионерный вид - сосна Веймутова. Она растет очень быстро, и ее семена распространяются на большую территорию. В течение нескольких десятилетий пионерные виды образовывали густой лес.

Следующий этап - появление деревьев, которые хорошо растут в тени пионерных видов, - например, кленов. Через полвека пионерные деревья становились зрелыми и постепенно погибали. Их семена уже не могли прорастать под покровом леса, и состав популяции деревьев сдвигался в сторону медленно растущих новичков - так называемых поздних сукцессионных видов .

В конце концов весь лес стал состоять из этих видов деревьев, что и наблюдают каждый год осенью жители Новой Англии, когда листья деревьев меняют окраску и лес приобретает огненный цвет, характерный для кленов.

Такой пример быстрорастущих пионеров с последующим заселением медленно растущими видами наблюдается во многих экосистемах. Например, на недавно образованных прибрежных песчаных дюнах первой появляется песчаный тростник. Эта трава помогает укрепить дюны так, чтобы в них смогли укорениться виды-преемники (вначале кустарники, а затем и деревья).

Сукцессия - процесс, при котором одни сообщества видов растений и животных заменяются серией других, и обычно более сложных сообществ (последовательная смена одного биоценоза другим, а вместе с ним смена экосистем, преемственно возникающая на одной и той же территории под влиянием природных фактоpов или человека).

С течением времени экосистемы меняются (зарастание водоема или вырубки).

Различают первичную и вторичную сукцессии.

Первичная представляет собой процесс развития и смены экосистем на незаселенных ранее участках (иными словами, пустых мест).

Интересным примером первичной сукцессии может служить заселение острова Кракатау, расположенного в Индонезии.

Ранним августовским утром 1883 г. взорвалась вершина вулкана Кракатау. Его взрывное извержение и последовавшая за этим мощная волна цунами высотой до 40 м унесли жизни свыше 36 тыс. человек. Звук взрыва тогда был слышен на расстоянии 4650 км, грохот разорвал барабанные перепонки моряков за 40 км от него, а атмосферные эффекты наблюдались по всему миру. На воздух было поднято 24 км 3 скал. Горячий пепел засыпал территорию площадью свыше 800 тыс. км. От острова осталась только гора, покрытая пеплом.

Интенсивные зори, возникшие в результате уменьшения прозрачности атмосферы, наблюдались здесь в течение нескольких лет. Все живое было погребено под потоками горящей лавы. Не осталось никаких признаков жизни. Даже мельчайшие споры и семена растений оказались в плену разбушевавшейся стихии.

Перед учеными открылась перспектива изучения развития жизни при естественном заселении субстрата голых скал, возникшего после извержения.

Впервые поселяющиеся в них организмы именуют пионерами .

Если рассматривать сукцессию на брошенных землях, которые не используются в сельском хозяйстве, то можно заметить, что бывшие поля быстро покрываются разнообразными однолетними растениями. Сюда же попадают семена древесных пород: сосны, ели, березы, осины. Они легко и на большие расстояния разносятся ветром, а также животными.

Попав на слабозадерненную почву, семена начинают прорастать, причем в наиболее благоприятном положении оказываются мелколиственные породы (береза, осина). Хвойные обычно гибнут из-за бурного развития трав, под влиянием разлагающегося опада или от обилия минеральных элементов.

Вначале изменения происходят быстро, затем скорость сукцессии снижается по мере появления растений, развивающихся более медленно. Всходы березы образуют густую поросль, которая затеняет почву, и даже если вместе с березой прорастают семена ели, ее всходы, оказавшись в весьма неблагоприятных условиях, сильно отстают от березовых.

Светолюбивая береза является серьезным конкурентом ели, к тому же специфические биологические особенности дают ей преимущества в росте. Березу называют «пионером леса», так как она почти всегда первой поселяется на нарушенных землях и обладает широким диапазоном приспособляемости.
Березки в возрасте 2-3 лет могут достигать высоты 100-120 см, тогда как елочки в том же возрасте едва дотягивают до 10 см. Постепенно к 8-10 годам березы формируют устойчивое березовое насаждение высотой до 10-12 м.

Среди сквозистого полога березы начинает подрастать и ель, образуя подрост разной степени густоты. Перемены происходят и в нижнем, травяно-кустарпичковом ярусе. По мере смыкания крон березы светолюбивые виды, характерные для начальных стадий сукцессии, постепенно начинают выпадать, уступая место теневыносливым.

Классическим примером первичной сукцессии является постепенное обрастание скалы лесом или смена озерной экосистемы лесной.

Сукцессия голой каменистой местности начинается с выветривания горных пород под действием абиотических факторов - температуры, влажности, солнечного света. Разрушение пород продолжают бактерии, грибы, водоросли, синезеленые, накипные лишайники.

Продуцентами органического вещества на начальных этапах являются синезеленые, водоросли лишайников и свободно живущие водоросли. Особенно неприхотливы синезеленые, они способны самостоятельно усваивать азот атмосферы. Пищевая независимость позволяет синезеленым осваивать необитаемые скалы. Их отмирающие организмы обогащают среду азотом.

Образующиеся в процессе жизнедеятельности первичных поселенцев органические кислоты растворяют породы и способствуют минерализации нарождающегося почвенного слоя. В результате деятельности такого биоценоза накапливается питательная смесь органических и минеральных соединений с растительными остатками, обогащенными азотом.

На питательной смеси вырастают неприхотливые споровые растения, не имеющие корней, - мхи, кустистые лишайники (их корнеподобные выросты называют ризоидами). По мере отмирания примитивной растительности формируется тонкий слой почвы. Появляются травянистые растения - осока, злаки, клевер, затеняющие первых поселенцев и лишающие их влаги. Пионерские виды постепенно вытесняются. Вслед за травами появляются кустарники, подготавливается почва для развития древесной растительности.

Вторичная сукцессия - это восстановление экосистем, когда-то уже существовавших на этой территории (последовательное развитие сообществ в ареале, где естественная растительность уничтожена или сильно нарушена, но почва и донные отложения сохранены).

Вторичные сукцессии появляются в станциях, которые уже были заселены, но лишились своих обитателей в результате климатических (оледенения, пожары) или геологических (эрозия) явлений, а также из-за вторжения человека (распашка полей). Например: сукцессия сибирского темнохвойного леса после лесного пожара

К таким сукцессиям может привести, например, локальное уничтожение леса болезнями, ураганом, извержением вулкана, землетрясением - так называемая катастрофическая сукцессия, либо пожаром - пирогенная сукцессия.

1) поле → однолетние → многолетние → кустарники → молодой → зрелый дубовый лес.

дикие растения дикие растения сосновый лес

Северная Каролина; время 150 лет.

2) вырубки → травы → кустарники и → лиственный лес → зрелый хвойный лес.

молодые деревья (березовая роща)

Средняя полоса; время 100 лет.

3) пруд → болото → луг → лес (сотни лет ).

4) сукцессия в степном районе на заброшенной проселочной дороге: однолетние сорняки – 2–5 лет; короткоживущие злаки – 3–10 лет; многолетние злаки – 10–20 лет; зрелые злаки – 20–40 лет. Таким образом, природе требуется 20–40 лет , чтобы на голом грунте создать зрелое степное сообщество.Изменения растительности и сопутствующей ей жизни возникают и под воздействием глобальных изменений - колебаний солнечной активности, климатических перемен. Такие сукцессии носят название циклических (вековых). Наконец, самые медленные изменения экосистем - эволюционные сукцессии, связанные с общей эволюцией биосферы планеты.Одни фазы сукцессии длятся немногие годы и десятилетия и все средообразующие растения успевают дать всего одно или несколько поколений. Такие фазы называют кратновременнопроизводными. Другие фазы протекают многими десятилетиями, средообразующие растения (их называют эдификаторами от лат. эдификатор - строитель) дают за этот срок многие поколения, а фазы называют длительнопроизводными.

Сукцессия протекает по определенным законам.

Как правило, сукцессия характеризуется прогрессивными процессами : формируется почва, развивается растительный покров, возрастает продуктивность экосистемы. Смена биоценозов сопровождается увеличением их видового разнообразия.

Смены одних экосистем другими тянутся десятилетиями и веками. Но есть еще более длительные перемены растительности, связанные с саморазвитием условно конечной фазы развития процесса - климакса (гр. климакс - лестница).

Каждая фаза сукцессии изменяет среду настолько, что как бы вытесняет сама себя. Одновременно меняется биотоп и сопутствующий ему биоценоз. Процесс смены биоценозов идет до тех пор, пока экосистема не достигнет равновесия со средой (климакса).

Конечным результатом сукцессии являются более медленно развивающиеся экосистемы, котоpые получили название климаксовых.

Например, густые кедровники Сибири нередко заболачиваются, затем происходитих разрежение, сопровождающееся уменьшением влажности и даже -возникновением в них местного климата (биоклимата, или фитоклимата), напоминающего степной. Такие парковые кедровники вновь зарастают более густым лесным покровом и заново начинается прецесс заболачивания. Такие циклические процессы называют автосукцессиями

Климаксовая экосистема - стабильный биоценоз, находящийся в равновесии со средой, относительно устойчивые фазы сукцессии, наиболее соответствующие экологическим характеристикам данной местности в определенный период геологического времени. Это зрелые экосистемы.

Примерами таких систем в жарком и сухом климате являются пустыни, в жарком и влажном - тропические леса.

Зрелые экосистемы обладают следующими признаками: Размер растений – большой; Видовое разнообразие – высокое; Трофическая структура - сочетание продуцентов, консументов и редуцентов; Эффективность использования энергии – высокое.

Не везде условия жизни на планете остались чисто природными. Местами они очень глубоко и необратимо изменены человеком. Тут, в этих условиях, развитие сукцессии не достигает природной условно конечной фазы климакса, а лишь природно-антропогенного "финала" - узловых экосистем, или сообществ.

Кое-где люди настолько часто нарушают природу, что такие непрерывно нарушаемые ценозы делаются как бы конечными в цепи сукцессии. Например, луг в долине реки, где постоянно пасется скот, не зарастает кустарниками и не может им зарасти, так как кусты и даже их зачатки бывают уничтожены животными. Такие искусственно устойчивые образования называют параклимаксами (гр. пара - возле, при).

Чем глубже антропогенная нарушенность среды какою-то пространства, тем на более ранних фазах сукцессии заканчивается развитие. Это правило степени завершенности сукцессии.Действительно, за узловым сообществом могла бы следовать фаза климакса.Параклимаксы возникают даже на самых ранних фазах сукцессии. Наш приречный песок, если его постоянно вытаптывают отдыхающие, так и останется голым песком - самой ранней фазой сукцессии.

Важным фактором стабилизации экосистемы является генетическое разнообразие особей популяций. Изменение условий внешней среды может вызвать гибель большинства особей популяции, адаптированных к прежним условиям существования.

Поэтому чем более генетически разнородной является та или иная популяция экосистемы, тем больший шанс у нее иметь организмы с аллелями, ответственными за появление признаков и свойств, позволяющих выжить и размножаться в новых условиях и восстановить прежнюю численность популяции. Время, необходимое для восстановления популяции, будет зависеть от скорости размножения особей, так как изменение признаков происходит только путем отбора в каждом поколении.

Стабильность экосистемы зависит также от степени колебаний условий внешней среды. В тропиках и субтропиках стабильны и оптимальны для многих видов температурные условия, влажность, освещенность.

Поэтому тропические экосистемы с высоким биологическим разнообразием входящих в них организмов отличаются высокой устойчивостью. И, напротив, тундровые экосистемы менее устойчивы. Им свойственны резкие колебания численности популяций разных видов.

Сукцессионная смена биогеоценозов происходит в строгой последовательности, нарушение которой хозяйственным вмешательством, не всегда ведет к желаемому результату.

Так, вырастить хвойный лес, который дает сырье для целлюлозно-бумажной промышленности, минуя фазу лиственного леса, для лесохозяйственников представляет немалые трудности. Эксплуатируя природные ресурсы, человек должен знать и учитывать закономерности развития естественных экосистем.

Мы никогда не делаем что-то одно. Любое вмешательство в природу имеет различные последствия , часто непредсказуемые.

Например: борьба с малярией на о. Северное Борнео (сейчас Бруней)

1950-е гг. – эпидемия малярии

1955 г. – распыление диэлдрина (пестициды) для борьбы с комарами

эпидемия прекратилась, комары исчезли

но: погибли другие насекомые, в т.ч. мухи и тараканы

погибли маленькие ящерицы, которые жили в домах и питались тараканами

погибли кошки, наевшиеся дохлых ящериц

быстро размножились крысы

угроза чумы

для исправления ситуации на остров на парашютах сбросили здоровых кошек.

В биологии хорошо известен закон необратимости эволюции бельгийского палеонтолога Л.Долло - организм не может вepнуться к прошлому состоянию, уже осуществленному в ряду его предков, даже вновь попав в среду их обитания. Например, вторично приспособившиеся к жизни в водной среде ихтиозавры или киты сохранили все черты пресмыкающихся и млекопитающих и лишь внешнее, а не функциональное сходство со своими далекими эволюционными предками - рыбами. Закономерность, аналогичная закону Л.Долло, существует и в ряду развития экосистемы. Это закон эволюционно-экологической необратимости - экосистема, потерявшая часть своих элементов или сменившаяся другой в результате дисбаланса экологических компонентов, не может вернуться к первоначальному своему состоянию в ходе сукцессии, если в ходе изменений произошли эволюционные перемены в ее экологических составляющих или группа видов исчезла из нее навсегда или на (системно) длительный срок. Если какой-то вид уничтожен человеком, экосистемы, куда он входил, будут другими. И это изменение безвозвратно. Даже если вид будет через какое-то время реакклиматизирован - возвращен в экосистему, все равно она будет иной: за время отсутствия вида в ней сложились новые связи, восстановить их прежнюю сеть практически бывает невозможно - в один и тот же поток нельзя войти дважды.

Изучая сукцессию в экосистемах, экологи выделили три механизма ее действия :

1.Содействие. Появившиеся в новой экосистеме пионерные виды облегчают другим видам последующее заселение. Например , после отступления ледника первыми появляются лишайники и некоторые растения с поверхностными корнями - то есть виды, способные выжить на бесплодной, бедной питательными веществами почве.

По мере отмирания этих растений происходит нарастание слоя почвы, что дает возможность укорениться поздним сукцессионным видам. Аналогично ранние деревья дают тень и убежище для ростков поздних сукцессионных деревьев.

2. Сдерживание. Иногда пионерные виды создают условия, усложняющие или вообще делающие невозможным появление поздних сукцессионных растений. Когда около океана появляются новые поверхности (например, в результате строительства бетонных пирсов или волнорезов), они быстро обрастают пионерными видами водорослей, и другие виды растений просто вытесняются.

Это вытеснение происходит очень легко, поскольку пионерный вид воспроизводится крайне быстро и вскоре покрывает все доступные поверхности, не оставляя места для последующих видов. Пример активного сдерживания - появление горчака, азиатского растения, распространившегося по американскому Западу. Горчак в значительной мере защелачивает почву, в которой растет, что делает ее непригодной для многих диких трав.

3. Сосуществование. Наконец, пионерные виды могут вообще не оказывать на последующие растения никакого воздействия - ни полезного, ни вредного. В частности, это происходит, если разные виды используют разные ресурсы и растут независимо друг от друга.

Важно понимать, что конечное состояние леса или дюны экологически неустойчиво.

Зрелый лес обычно характеризуется нулевым суммарным приростом органических веществ. Это означает, что с течением времени из-за потери веществ под воздействием таких процессов, как эрозия, лес постепенно начнет погибать. Кстати, большинство лесов обладают максимальной продуктивностью в течение первой половины сукцессионного цикла.

Устойчивость экосистемы (стабильность) - способность экосистемы и ее отдельных частей противостоять колебаниям внешних факторов и сохранять свою структуру и функциональные особенности.

Например , в экосистеме количество осадков понижается на 50 % по сравнению со среднегодовыми значениями, но продукция растений уменьшается при этом только на 25 %, а численность популяции растительноядных организмов - всего на 10 %.

Стойкость к перенесению неблагоприятных условий зависит от выносливости организмов, их способности размножаться в широком диапазоне условий и усиливается возможностью перестройки цепей питания в богатых сообществах.

Устойчивость экосистем падает с обеднением видового состава. Самые устойчивые - богатые жизнью тропические леса (свыше 8000 видов растений), достаточно устойчивы леса умеренной полосы (2000 видов), менее устойчивы тундровые биоценозы (500 видов), мало устойчивы экосистемы океанических островов. Еще менее устойчивы фруктовые сады, а посевные поля без поддержки человека вообще не могут существовать, они быстро зарастают сорняками и уничтожаются вредителями.

Говоря об устойчивости экосистем , или их стабильности, мы должны отметить, что существуют два типа стабильности:

1. резистентная устойчивость (сопротивляться нарушениям, поддерживать свою структуру и функцию, способность оставаться в устойчивом состоянии под нагрузкой)

2. упругая устойчивость (способность быстро восстанавливаться, восстанавливаться после того, как структура и функция были нарушены).

Для экосистем эти два типа устойчивости не могут одновременно полноценно развиваться. Так, калифорнийский лес из секвойи довольно устойчив к пожарам (для этих деревьев характерна толстая кора и другие адаптации), но если он все же сгорит, то восстанавливается очень медленно или не восстанавливается вовсе.

Напротив, калифорнийские заросли чапараля очень легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (отличная упругая устойчивость).

Устойчивость экосистем обусловлена эффективностью действия внутренних механизмов экосистемы. Выполнение функций жизнеобеспечения экосистеме не одним, а несколькими видами или компонентами повышает стабильность экосистемы.

Эффективность саморегуляции определяется разнообразием видов и пищевых взаимоотношений между ними.

Если снижается численность одного из первичных консументов, то при разнообразии видов хищники переходят к питанию более многочисленными животными, которые раньше были для них второстепенными.

Длинные цепи питания часто пересекаются, создавая возможность вариации пищевых отношений в зависимости от урожая растений, численности жертв и пр. Тигры и львы в отсутствие копытных обходятся менее крупными животными и даже растительной пищей. Сокол-сапсан охотится в воздухе, а при массовом размножении леммингов он начинает питаться этими зверьками, подхватывая их с земли.

Цепь: растения--мышь-- змея--орел может быть сокращена до: растения--мышь--орел. В более благоприятные годы численность видов восстанавливается, и пищевые отношения в биоценозе нормализуются.

В урожайные годы возрастает количество травоядных. Хищники, обеспеченные пищей, быстро размножаются. Сокращение численности травоядных создает дефицит питания среди хищных видов, и в малокормные годы они почти не размножаются.

Каждые несколько лет численность популяций леммингов в тундре резко возрастает. Лемминги объедают тундровую растительность. Вещества растений через организм зверьков переходят в детрит и лишь спустя несколько лет после минерализации образуют плодородную почву с богатым и питательным растительным покровом. Численность леммингов снова возрастает.

В малокормные годы их количество интенсивно сокращается не только недостатком питания, но еще и быстро размножившимися хищниками - песцами, лисами, совами. Так растения, лемминги и хищники осуществляют саморегуляцию тундровой экосистемы, сохраняя ее устойчивость и долговечность.

Неразумное вмешательство в природные экосистемы приводит к непредсказуемым и печальным последствиям. В середине ХIХ в. на одной из ферм Австралии выпустили на волю 12 пар завезенных из Европы кроликов.

В экосистемах Австралии было недостаточно хищников, способных регулировать их численность, и за 40 лет популяция кроликов разрослась до нескольких сот миллионов особей. Кролики расселились по всему материку, выедая проростки сосны, уничтожая луга и пастбища, подрывая кормовую базу местных травоядных - кенгуру. Поселенная в крымских лесах белка телеутка заметно сократила их естественное возобновление и стала причинять ущерб виноградникам. Промысловую же ценность белка утратила, ее пушистый мех в теплом климате стал коротким и грубым.

К неблагоприятным последствиям привела акклиматизация уссурийского енота в биоценозах Европейской части России. Несмотря на сходство климатических условий, зверьки утратили ценные качества меха. В лесах они сократили численность охотничьих птиц, в особенности тетеревов, истребляя их гнезда и выводки. Еноты стали обитать вблизи населенных пунктов, нападая на птицу и мелких домашних животных.

В процессе акклиматизации горбуши в реках северо-западного региона России из-за конкуренции за пищу и места для нереста сильно сократилась численность местных лососевых рыб. Для борьбы с личинками малярийных комаров в реках Приаралья в 40-50-е годы развели рыбку-гамбузию, неожиданно интенсивно сократившую численность промысловых рыб, успешно конкурируя с ними в охоте на мелких животных.

Вселенные виды - одна из основных причин вымирания позвоночных животных. На Гавайские острова ввезли 22 вида млекопитающих, 160 видов птиц, 1300 видов насекомых, свыше 2 тыс. видов цветковых растений. Вселенные виды стали главной причиной вымирания 30% птиц-аборигенов, 34% моллюсков, перед угрозой исчезновения находятся до 70% видов гавайской флоры.

Проблема восстановления в биоценозах природной саморегуляции особенно важна в наши дни, когда многие виды находятся на грани исчезновения, а природные территории утратили благолепный вид.

Текущая страница: 4 (всего у книги 44 страниц) [доступный отрывок для чтения: 29 страниц]

2.4. Гомеостаз

Гомеостаз (от греч. homoios – тот же, statos – состояние) – способность биологических систем противостоять изменениям и сохранять относительное динамическое постоянство своей структуры и свойств. Поддержание гомеостаза – непременное условие существования как отдельных клеток и организмов, так целых биологических сообществ и экосистем.

В гомеостазе (устойчивости) живых систем выделяют:

выносливость (живучесть, толерантность (см. разд. 3.2.2) – способность переносить изменения среды без нарушения основных свойств системы;

упругость (резистентность, сопротивляемость) – способность быстро самостоятельно возвращаться в нормальное состояние из неустойчивого, которое возникло в результате внешнего неблагоприятного воздействия на систему.

Понятие «гомеостаз» широко используется в экологии для характеристики устойчивости различных систем. Гомеостаз клетки определяется специфическими физико-химическими условиями, отличными от условий внешней среды; гомеостаз многоклеточного организма – поддержанием постоянства внутренней среды. Константами гомеостаза животных являются объем, состав крови и других жидкостей организма.

Гомеостаз популяции определяется поддержанием пространственной структуры, плотности и генетического разнообразия. Вследствие гомеостатической регуляции поддерживается постоянство состава и численности популяций в сообществах.

На уровне экосистем гомеостаз проявляется в наиболее устойчивых формах взаимодействия между видами, что выражается в приспособленности к особенностям среды и поддержании циклов круговорота биогенов. Можно рассматривать даже гомеостаз биосферы, в которой взаимодействие разнообразных организмов поддерживает постоянство газового состава атмосферы, состава почв, состава и концентрации солей мирового океана и др.

Гомеостаз обеспечивается работой механизмов регулирования, действующих по принципу отрицательной обратной связи. Тогда, используя кибернетические термины, нарушения в функционировании живой системы следует констатировать как появление в канале обратной связи «помех» или «шумов».

Роль помех могут играть различные факторы, например погодные условия, деятельность человека и т. п. Резкие изменения характеристик окружающей среды, при которых они (или одна из них) выходят за границы допустимого, называют экологическим стрессом.

Безусловно, конкретные механизмы регулирования различны для клетки организма, популяции и экосистемы, но всегда результатом саморегуляции и поддержания гомеостаза является сбалансированность и четкая согласованность функционирования всех элементов биологической системы.

2.5. Биологический вид

Разделение всего многообразия животных и растений на виды является способом упорядоченного описания живой природы, основанным на выявлении иерархической структуры ее элементов.

В большинстве случаев особи разных видов различают по внешнему виду, поведению, физиологии. Однако одних внешних различий, даже значительных, для выделения вида недостаточно. Если особи двух разных групп организмов при самом значительном различии внешнего вида способны, скрещиваясь, давать потомство (т. е. возможен обмен генами), то они являются одним видом. Напротив, особей, которые не способны дать потомство при скрещивании, относят к различным видам.

Вид – совокупность особей, способных к скрещиванию и образованию плодовитого потомства, населяющих определенный ареал (область географического распространения), обладающих рядом общих морфо-физиологических признаков и типов взаимоотношений с абиотической и биотической средой, отделенных от других таких же групп особей практически полным отсутствием гибридных форм. Вид – качественный этап процесса эволюции (см. разд. 3.33).

Приведенное правило определения видов (как и все прочие научные схемы, описывающие безгранично многообразные проявления жизни) имеет исключения.

Контрольные вопросы и задания

2.1. Что такое гомеостаз?

2.2. Приведите примеры выносливости и упругости организмов.

2.3. Какие изменения происходят с веществом и энергией в ходе фотосинтеза и роста растений?

2.4. Назовите сходства и различия процессов фотосинтеза и хемосинтеза.

2.5. Перечислите основные типы дыхания.

2.6. Назовите единый и универсальный источник энергообеспечения клетки.

2.7. Какие организмы являются продуцентами и какова их роль в экосистеме?

2.8. Объясните взаимоотношения между организмами-производителями, организмами-потребителями и организмами-разрушителями.

2.9. Какая роль отводится воде в жизни клетки?

2.10. Дайте определение биологическому виду. Имеют ли место исключения из данного правила определения вида?

ФАКТОРЫ СРЕДЫ

Живое неотрывно от среды. Каждый отдельный организм, являясь самостоятельной биологической системой, постоянно находится в прямых или косвенных отношениях с разнообразными компонентами и явлениями окружающей его среды или, иначе, с р е д ы о б и т а н и я, влияющими на состояние и свойства организма.

Среда – одно из основных экологических понятий, которое означает весь спектр окружающих организм элементов и условий в той части пространства, где обитает организм, все то, среди чего он живет и с чем непосредственно взаимодействует. При этом организмы, приспособившись к определенному комплексу конкретных условий, в процессе жизнедеятельности сами постепенно изменяют эти условия, т. е. среду своего существования.

3.1. Экологические факторы и их действие

Экологический фактор – любой элемент окружающей среды, способный прямо или косвенно влиять на живой организм, хотя бы на одном из этапов его индивидуального развития, называют экологическим фактором.

Экологические факторы многообразны, при этом каждый фактор является совокупностью соответствующего условия среды и его ресурса (запаса в среде).

Экологические факторы среды (рис. 3.1) принято делить на две группы:

Факторы косной (неживой) природы – абиотические или абиогенные;

Факторы живой природы – биотические или биогенные.

С другой стороны, по происхождению и те и другие бывают как природными, так и антропогенными, т. е. прямо или косвенно связанными с деятельностью человека, который не только меняет режимы природных экологических факторов, но и создает новые, синтезируя ядохимикаты, удобрения, строительные материалы, лекарства и т. п.

Рис. 3.1. Классификация экологических факторов

Известно, что в основу построения системы терминов должна быть положена достаточно емкая классификация, охватывающая все понятия в их взаимосвязи и развитии. Исключительная сложность, взаимосвязанность и взаимозависимость явлений в природе затрудняет классификацию в экологии. Наряду с приведенной классификацией экологических факторов существует много других (менее распространенных), в которых используют иные отличительные признаки. Так, выделяют факторы, зависящие и не зависящие от численности и плотности организмов. Например, на действие макроклиматических факторов не сказывается количество животных или растений, а эпидемии (массовые заболевания), вызываемые патогенными микроорганизмами, зависят от их количества на данной территории. Известны классификации, в которых все антропогенные факторы относят к биотическим.

3.1.1. Абиотические факторы

В абиотической части среды обитания (в неживой природе) все факторы прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной) и др.

3.1.1.1. Основные климатические факторы

Энергия Солнца. Она распространяется в пространстве в виде электромагнитных волн. Для организмов важны длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия.

Около 99 % всей энергии солнечной радиации составляют лучи с длиной волны λ = 170 … 4000 нм, в том числе 48 % приходится на видимую часть спектра (λ = 390 … 760 нм), 45 % – на близкую инфракрасную (λ = 760 … 4000 нм) и около 7 % – на ультрафиолетовую (λ < 400 нм).

Преимущественное значение для фотосинтеза имеют лучи с λ = 380 … 710 нм. Длинноволновая (дальняя инфракрасная) солнечная радиация (λ > 4000 нм) незначительно влияет на процессы жизнедеятельности организмов.

Ультрафиолетовые лучи с λ > 320 нм в малых дозах необходимы животным и человеку, так как под их действием в организме образуется витамин D. Излучение с λ < 290 нм губительно для живого, но до поверхности Земли оно не доходит, поглощаясь озоновым слоем атмосферы.

При прохождении через атмосферный воздух солнечный свет (рис. 3.2) отражается, рассеивается и поглощается. Чистый снег отражает примерно 80–95 % солнечного света, загрязненный – 40–50 %, черноземная почва – до 5 %, сухая светлая почва – 35–45 %, хвойные леса – 10–15 %. Однако освещенность земной поверхности существенно колеблется в зависимости от времени года и суток, географической широты, экспозиции склона, состояния атмосферы и т. п.

Вследствие вращения Земли периодически чередуются светлое и темное время суток. Цветение, прорастание семян у растений, миграция, зимняя спячка, размножение животных и многое другое в природе связаны с длительностью фотопериода (длиной дня). Необходимость в свете для растений обусловливает быстрый их рост в высоту, ярусную структуру леса. Водные растения распространяются преимущественно в поверхностных слоях водоемов.

Рис. 3.2. Баланс солнечной радиации на поверхности Земли в дневное время

Температура. Температура главным образом связана с солнечным излучением, но в ряде случаев определяется энергией геотермальных источников.

При температуре ниже точки замерзания живая клетка физически повреждается образующимися кристаллами льда и гибнет, а при высоких температурах происходит денатурация ферментов. Абсолютное большинство растений и животных не выдерживает отрицательных температур тела. Верхний температурный предел жизни редко поднимается выше 40–45 °C.

В диапазоне между крайними границами скорость ферментативных реакций (следовательно, и интенсивность обмена веществ) удваивается с повышением температуры на каждые 10 °C. Значительная часть организмов способна контролировать (поддерживать) температуру тела, причем в первую очередь наиболее жизненно важных органов. Такие организмы называют гомойотермными – теплокровными (от греч. homoios – подобный, therme – теплота), в отличие от пойкилотермных – холоднокровных (от греч. poikilos – различный, переменчивый, разнообразный), имеющих непостоянную температуру, зависящую от температуры окружающей среды.

В водной среде благодаря высокой теплоемкости воды изменения температуры менее резкие и условия более стабильные, чем на суше. Известно, что в регионах, где температура в течение суток, а также в разные сезоны сильно меняется, разнообразие видов меньше, чем в регионах с более постоянными суточными и годовыми температурами.

Температура, как и интенсивность света, зависит от географической широты, сезона, времени суток и экспозиции склона. Действие экстремальных температур (низких и высоких) усиливается сильными ветрами.

Изменение температуры по мере подъема в воздушной среде или погружения в водную среду называют температурной стратификацией. Обычно и в том и в другом случае наблюдается непрерывное снижение температуры с определенным градиентом. Тем не менее существуют и иные варианты. Так, в летний период поверхностные воды нагреваются сильнее глубинных. В связи со значительным уменьшением плотности воды по мере нагрева начинается ее циркуляция в поверхностном нагретом слое без смешения с более плотной, холодной водой нижерасположенных слоев. В результате между теплым и холодным слоями образуется промежуточная зона с резким градиентом температуры. Все это влияет на размещение в воде живых организмов, а также на перенос и рассеивание поступающих примесей.

Подобное явление встречается и в атмосфере, когда охлажденные слои воздуха смещаются вниз и располагаются под теплыми слоями, т. е. имеет место температурная инверсия , способствующая накоплению загрязняющих веществ в приземном слое воздуха.

Инверсии способствуют некоторые особенности рельефа, например, котлованы и долины. Она возникает при наличии на определенной высоте веществ, например аэрозолей, нагреваемых непосредственно за счет прямого солнечного излучения, что вызывает более интенсивное прогревание верхних воздушных слоев.

В почвенной среде суточная и сезонная стабильность (колебания) температуры зависят от глубины (рис. 3.3). Значительный градиент температур (а также влажности) позволяет обитателям почвы обеспечивать себе благоприятную среду путем незначительных перемещений.

Рис. 3.3. Уменьшение годового колебания температуры почвы с глубиной

Наличие и численность живых организмов могут влиять на температуру. Например, под пологом леса или под листьями отдельного растения имеет место иная температура.

Осадки, влажность. Вода обязательна для жизни на Земле, в экологическом плане она уникальна (см. разд. 2.1, 2.2). При практически одинаковых географических условиях на Земле существуют и жаркая пустыня, и тропический лес (рис. 3.4). Различие состоит только в годовом количестве осадков: в первом случае 0,2-200 мм, а во втором 900-2000 мм.

Осадки, тесно связанные с влажностью воздуха, представляют собой результат конденсации и кристаллизации водяных паров в высоких слоях атмосферы. В приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги – выпадает иней или снег.

Одна из основных физиологических функций любого организма – поддержание на достаточном уровне количества воды в теле. В процессе эволюции у организмов сформировались разнообразные приспособления к добыванию и экономному расходованию воды, а также к переживанию засушливого периода. Одни животные пустыни получают воду из пищи, другие за счет окисления своевременно запасенных жиров (например, верблюд, способный путем биологического окисления из 100 г жира получить 107 г метаболической воды); при этом у них минимальна водопроницаемость наружных покровов тела, преимущественно ночной образ жизни и т. д. При периодической засушливости характерно впадание в состояние покоя с минимальной интенсивностью обмена веществ.

Рис. 3.4. Зависимость типа растительности от климатических условий

Наземные растения получают воду главным образом из почвы. Малое количество осадков, быстрый дренаж, интенсивное испарение либо сочетания этих факторов ведут к иссушению, а избыток влаги – к переувлажнению и заболачиванию почв.

Баланс влаги зависит от разницы между количеством выпавших осадков и количеством воды, испарившейся с поверхностей почвы и растений (путем транспирации ). В свою очередь процессы испарения непосредственно зависят от относительной влажности атмосферного воздуха. При влажности, близкой к 100 %, испарение практически прекращается, и если дополнительно понижается температура, то начинается обратный процесс – конденсация (образуется туман, выпадают роса, иней).

Помимо отмеченного, влажность воздуха как экологический фактор при своих крайних значениях (повышенной и пониженной влажности), усиливает воздействие (усугубляет действие) температуры на организм.

Насыщение воздуха парами воды редко достигает максимального значения. Дефицит влажности – разность между максимально возможным и фактически существующим насыщением при данной температуре. Это один из важнейших экологических параметров, поскольку характеризует сразу две величины: температуру и влажность. Чем выше дефицит влажности, тем суше и теплее, и наоборот.

Режим осадков – важнейший фактор, определяющий миграцию загрязняющих веществ в природной среде и вымывание их из атмосферы.

Подвижность среды. Причинами возникновения движения воздушных масс (ветра) являются в первую очередь неодинаковый нагрев земной поверхности, вызывающий перепады давления, а также вращение Земли. Ветер направлен в сторону более прогретого воздуха.

Ветер – важнейший фактор распространения на большие расстояния влаги, семян, спор, химических примесей и т. п. Он способствует как снижению околоземной концентрации пыле-и газообразных веществ вблизи места их поступления в атмосферу, так и повышению фоновых концентраций в воздушной среде вследствие выбросов далеких источников, включая трансграничный перенос.

Ветер ускоряет транспирацию (испарение влаги наземными частями растений), что особенно ухудшает условия существования при низкой влажности. Кроме того, он косвенно влияет на все живые организмы суши, участвуя в процессах выветривания и эрозии.

Подвижность в пространстве и перемешивание водных масс способствуют поддержанию относительной гомогенности (однородности) физических и химических характеристик водных объектов. Средняя скорость поверхностных течений лежит в пределах 0,1–0,2 м/с, достигая местами 1 м/с, у Гольфстрима – 3 м/с.

Давление. Нормальным атмосферным давлением считается абсолютное давление на уровне поверхности Мирового океана 101,3 кПа, соответствующее 760 мм рт. ст. или 1атм. В пределах земного шара существуют постоянные области высокого и низкого атмосферного давления, причем в одних и тех же точках наблюдаются сезонные и суточные его колебания. По мере увеличения высоты относительно уровня океана давление уменьшается, снижается парциальное давление кислорода, усиливается транспирация у растений.

Периодически в атмосфере образуются области пониженного давления с мощными воздушными потоками, перемещающимися по спирали к центру, которые называют циклонами. Для них характерно большое количество осадков и неустойчивая погода. Противоположные природные явления называют антициклонами. Они характеризуются устойчивой погодой, слабыми ветрами и в ряде случаев температурной инверсией. При антициклонах порой возникают неблагоприятные метеорологические условия, способствующие накоплению в приземном слое атмосферы загрязняющих веществ.

Различают также морское и континентальное атмосферное давление.

Давление в водной среде возрастает по мере погружения. Благодаря значительно (в 800 раз) большей, чем у воздуха, плотности воды на каждые 10 м глубины в пресноводном водоеме давление увеличивается на 0,1 МПа (1атм). Абсолютное давление на дне Марианской впадины превышает 110 МПа (1100 атм).

Ионизирующие излучения. Ионизирующим называют излучение, образующее пары ионов при прохождении через вещество; фоновым – излучение, создаваемое природными источниками. Оно имеет два основных источника: космическое излучение и радиоактивные изотопы и элементы в минералах земной коры, возникшие некогда в процессе образования вещества Земли. Из-за большого периода полураспада ядра многих первозданных радиоактивных элементов сохранились в недрах Земли до настоящего времени. Главнейшие из них – калий-40, торий-232, уран-235 и уран-238. Под воздействием космического излучения в атмосфере постоянно образуются все новые ядра радиоактивных атомов, главные из которых – углерод-14 и тритий.

Радиационный фон ландшафта – одна из непременных составляющих его климата. В формировании фона принимают участие все известные источники ионизирующего излучения (рис. 3.5), однако вклад каждого из них в общую дозу облучения зависит от конкретной географической точки. Человек как обитатель природной среды получает основную часть облучения от естественных источников радиации, и избежать этого невозможно. Все живое на Земле подвергается излучению из Космоса на протяжении всей истории существования и адаптировалось к этому.

Рис. 3.5. Дозы получаемого радиоактивного облучения, мрад/г. (по Н. Ф. Реймерсу): 1 – космические лучи; 2 – внутренние α-лучи и излучение 40K, содержащегося в живых организмах; 3 – излучение местных внешних источников

Горные ландшафты благодаря значительной высоте над уровнем моря характеризуются повышенным вкладом космического излучения. Ледники, выполняя функцию поглощающего экрана, задерживают в своей массе излучение подстилающих коренных пород. Обнаружены различия в содержании радиоактивных аэрозолей над морем и сушей. Суммарная радиоактивность морского воздуха в сотни и тысячи раз меньше, чем континентального.

На Земле есть районы, где интенсивность излучения в десятки раз превышает средние значения, например, районы месторождений урана и тория. Такие места называют урановыми и ториевыми провинциями. Стабильный и относительно более высокий уровень излучения наблюдается в местах выхода гранитных пород.

Биологические процессы, сопровождающие образование почв, существенно влияют на накопление в последних радиоактивных веществ. При малом содержании гумусовых веществ их активность слабая, тогда как черноземы всегда отличались более высокой удельной активностью. Особенно она высока у черноземных и луговых почв, расположенных близко к гранитным массивам. По степени возрастания удельной активности почвы ориентировочно можно расположить в следующем порядке: торфяные; почвы степной зоны и лесостепи; черноземные; почвы, развивающиеся на гранитах.

Влияние периодических колебаний интенсивности космического излучения у земной поверхности на дозу облучения живых организмов практически не существенно.

Во многих районах земного шара мощность экспозиционной дозы, обусловленная излучением урана и тория, достигает уровня облучения, существовавшего на Земле в геологически обозримое время, при котором шла естественная эволюция живых организмов. В целом ионизирующее излучение более губительно воздействует на высокоразвитые и сложные организмы, причем человек отличается особой чувствительностью. Некоторые вещества распределяются в организме равномерно, например углерод-14 или тритий, а другие накапливаются в определенных органах. Так, радий-224, – 226, свинец-210, полоний-210 аккумулируются в костных тканях. Сильное воздействие на легкие оказывает инертный газ радон-220, порой выделяющийся не только из залежей в литосфере, но и из минералов, добытых человеком и применяемых в качестве строительных материалов.

Радиоактивные вещества могут накапливаться в воде, почве, осадках или в воздухе, если скорость их поступления превышает скорость радиоактивного распада. В живых организмах накопление радиоактивных веществ происходит при их попадании с пищей («правило биотического усиления», см. разд. 5.1.3).

ГОМЕОСТАЗ , гомеостазис (от гомео ... и греческого stasis - неподвижность, состояние), способность биологических систем противостоять изменениям и сохранять динамическое относительное постоянство состава и свойств. Термин «Гомеостаз» предложил У. Кеннон в 1929 году для характеристики состояний и процессов, обеспечивающих устойчивость организма. Однако идея о существовании физиологических механизмов, направленных на поддержание постоянства внутренней среды организма, была высказана ещё во 2-й половине 19 века К. Бернаром, который рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. Явления гомеостаза наблюдаются на разных уровнях биологической организации.

Гомеостаз физиологический. Возникновение жизни на Земле, появление одноклеточных организмов было связано с формированием и непрестанным поддержанием в клетке в течение всей жизни специфических физико-химических условий, отличающихся от условий окружающей среды. У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит развитие и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза. У морских беспозвоночных имеются гомеостатические механизмы стабилизации объёма, ионного состава и рН жидкостей внутренней среды. Для животных, перешедших к жизни в пресных водах и на суше, а также у позвоночных, мигрировавших из пресных вод в море, сформированы механизмы осморегуляции, обеспечивающие постоянство концентрации осмотически активных веществ внутри организма. Наиболее совершенен гомеостаз у млекопитающих, что способствует расширению возможностей их приспособления к окружающей среде. Благодаря гомеостазу обеспечивается постоянство объёма крови (изоволемия) и других внеклеточных жидкостей, концентрации в них ионов, осмотически активных веществ (изоосмия), постоянство рН крови, состава в ней белков, липидов и углеводов. У птиц и млекопитающих в узких пределах регулируется температура тела (изотермия). Дополнительные физиологические механизмы обеспечивают стабилизацию внутренней среды отдельных органов (например, гематоэнцефалические и гематоофтальмические барьеры определяют особые свойства жидкостей, окружающих клетки мозга и глаза).

Гомеостаз достигается системой физиологических регуляторных механизмов. Наиболее важную, интегрирующую функцию выполняет ЦНС и особенно кора головного мозга, большое значение имеют влияние симпатической нервной системы, состояние гипофиза, надпочечников и других эндокринных желёз, степень развития эффекторных органов. Примером сложной гомеостатической системы, включающей различные механизмы регуляции, является система обеспечения оптимального уровня артериального давления, которая регулируется по принципу цепных реакций с обратными связями: изменение давления крови воспринимается барорецепторами сосудов, сигнал передаётся в сосудистые центры, изменение состояния которых ведёт к изменению тонуса сосудов и сердечной деятельности; одновременно включается система нейрогуморальной регуляции и кровяное давление возвращается к норме.

Нарушения механизмов, лежащих в основе гомеостатических процессов, рассматриваются как «болезни гомеостаза». С некоторой условностью к ним можно отнести функциональные нарушения нормальной деятельности организма, связанные с вынужденной перестройкой биологических ритмов и т. д. Познание закономерностей гомеостаза человека имеет большое значение для выбора эффективных и рациональных методов лечения многих заболеваний.

У растений основное значение для поддержания гомеостаза на клеточном уровне имеют плазмалемма и тонопласт. Первая регулирует приток в клетку питательных ионов и воды из внешней среды и выделение баластных и избыточных ионов H + , Na + , Ca 2+ , второй - поступление в протоплазму запасных субстратов из вакуолей при их недостатке и удаление в вакуоль - при избытке. Стабилизация осмотического потенциала клеток осуществляется главным образом за счёт поддержания определенной внутриклеточной концентрации К + и анионов. На тканевом уровне в поддержании гомеостаза участвуют плазмодесмы, которые регулируют межклеточные потоки углеводов и других субстратов.

Гомеостаз генетический, или популяционный, способность популяции поддерживать относительную стабильность и целостность генотипической структуры в изменяющихся условиях среды. Достигается посредством сохранения генетического равновесия частоты аллелей при свободном скрещивании особей в популяциях путём поддержания гетерозиготности и полиморфизма, определенного темпа и направления мутационного процесса. Изучение гомеостаза - актуальная задача при исследовании закономерностей микроэволюции. Гомеостаз развития - способность данного генотипа создавать определенный фенотип в широком диапазоне условий.

Понятие «Гомеостаз» широко используется в экологии при характеристике состояния экосистем и их устойчивости. Благодаря гомеостазу поддерживается постоянство видового состава и численности особей в биоценозах.

Клеточный уровень

В настоящее время выделяют несколько основных уровней организации живой материи: кле­точный, организменный, популяционно-видовой, биогеоценотический и биосферный.

Хотя проявления некоторых свойств живого обусловлены уже взаимодействием биологических макромолекул (белков, нуклеиновых кислот, полисахаридов и др.), все же единицей строения, функций и развития живого является клетка, способная осуществлять и сопрягать процессы реа­лизации и передачи наследственной информации с обменом веществ и превращения энергии, обеспечивая тем самым функционирование более высоких уровней организации. Элементарной единицей клеточного уровня организации является клетка, а элементарным явлением - реакции клеточного метаболизма.

Организменный уровень

Организм - это целостная система, способная к самостоятельному существованию. По количеству клеток, входящих в состав организмов, их делят на одноклеточные и много­клеточные. Клеточный уровень организации у одноклеточных организмов (амебы обыкновенной, эвглены зеленой и др.) совпадает с организменным. В истории Земли был период, когда все организмы были представлены только одноклеточными формами, но они обеспечивали функци­онирование как биогеоценозов, так и биосферы в целом. Большинство многоклеточных организ­мов представлено совокупностью тканей и органов, в свою очередь также имеющих клеточное строение. Органы и ткани приспособлены для выполнения определенных функций. Элементарной единицей данного уровня является особь в ее индивидуальном развитии, или онтогенезе, поэтому организменный уровень также называют онтогенетическим. Элементарным явлением данного уровня являются изменения организма в его индивидуальном развитии.

Популяционно-видовой уровень

Популяция - это совокупность особей одного вида, свободно скрещивающихся между собой и проживающих обособленно от других таких же групп особей.

В популяциях происходит свободный обмен наследственной информацией и ее передача по­томкам. Популяция является элементарной единицей популяционно-видового уровня, а элемен­тарным явлением в данном случае являются эволюционные преобразования, например мутации и естественный отбор.

Биогеоценотический уровень

Биогеоценоз представляет собой исторически сложившееся сообщество популяций разных ви­дов, взаимосвязанных между собой и окружающей средой обменом веществ и энергии.

Биогеоценозы являются элементарными системами, в которых осуществляется вещественно- энергетический круговорот, обусловленный жизнедеятельностью организмов. Сами биогеоцено­зы - это элементарные единицы данного уровня, тогда как элементарные явления - это потоки энергии и круговороты веществ в них. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.

Биосферный уровень

Биосфера - оболочка Земли, населенная живыми организмами и преобразуемая ими.

Биосфера является самым высоким уровнем организации жизни на планете. Эта оболочка ох­ватывает нижнюю часть атмосферы, гидросферу и верхний слой литосферы. Биосфера, как и все другие биологические системы, динамична и активно преобразуется живыми существами. Она сама является элементарной единицей биосферного уровня, а в качестве элементарного явления рассматривают процессы круговорота веществ и энергии, происходящие при участии живых ор­ганизмов.

Как уже было сказано выше, каждый из уровней организации живой материи вносит свою лепту в единый эволюционный процесс: в клетке не только воспроизводится заложенная наслед­ственная информация, но и происходит ее изменение, что приводит к возникновению новых со­четаний признаков и свойств организма, в свою очередь подвергающихся действию естественного отбора на популяционно-видовом уровне и т. д.

Биологические системы

Биологические объекты различной степени сложности (клетки, организмы, популяции и ви­ды, биогеоценозы и саму биосферу) рассматривают в настоящее время в качестве биологических систем.

Система - это единство структурных компонентов, взаимодействие которых порождает новые свойства по сравнению с их механической совокупностью. Так, организмы состоят из органов, органы образованы тканями, а ткани формируют клетки.

Характерными чертами биологических систем являются их целостность, уровневый принцип организации, о чем говорилось выше, и открытость. Целостность биологических систем в значи­тельной степени достигается за счет саморегуляции, функционирующей по принципу обратной связи.

К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ, энергии и информации, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород.

Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция

Биологические системы отличаются от тел неживой природы совокупностью признаков и свойств, среди которых основными являются клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и раз­витие, воспроизведение и эволюция.

Элементарной структурно-функциональной единицей живого является клетка. Даже вирусы, относящиеся к неклеточным формам жизни, неспособны к самовоспроизведению вне клеток.

Различают два типа строения клеток: прокариотические и эукариотические. Прокариотические клетки не имеют сформированного ядра, их генетическая информация сосредоточена в ци­топлазме. К прокариотам относят прежде всего бактерии. Генетическая информация в эукариоти- ческих клетках хранится в особой структуре - ядре. Эукариотами являются растения, животные и грибы. Если в одноклеточных организмах клетке присущи все проявления живого, то у много­клеточных происходит специализация клеток.

В живых организмах не встречается ни одного химического элемента, которого бы не было в неживой природе, однако их концентрации существенно различаются в первом и во втором слу­чаях. Преобладают в живой природе такие элементы, как углерод, водород и кислород, которые входят в состав органических соединений, тогда как для неживой природы в основном характер­ны неорганические вещества. Важнейшими органическими соединениями являются нуклеиновые кислоты и белки, которые обеспечивают функции самовоспроизведения и самоподдержания, но ни одно из этих веществ не является носителем жизни, поскольку ни по отдельности, ни в группе они не способны к самовоспроизведению - для этого необходим целостный комплекс молекул и структур, которым и является клетка.

Все живые системы, в том числе клетки и организмы, являются открытыми системами. Од­нако, в отличие от неживой природы, где в основном происходит перенос веществ с одного места в другое или изменение их агрегатного состояния, живые существа способны к химическому превращению потребляемых веществ и использованию энергии. Обмен веществ и превращения энергии связаны с такими процессами, как питание, дыхание и выделение.

Под питанием обычно понимают поступление в организм, переваривание и усвоение им ве­ществ, необходимых для пополнения энергетических запасов и построения тела организма. По способу питания все организмы делят на автотрофов и гетеротрофов.

Автотрофы - это организмы, которые способны сами синтезировать органические вещества из неорганических.

Гетеротрофы - это организмы, которые потребляют в пищу готовые органические вещества.

Автотрофы делятся на фотоавтотрофов и хемоавтотрофов. Фотоавтотрофы используют для синтеза органических веществ энергию солнечного света. Процесс преобразования энергии света в энергию химических связей органических соединений называется фотосинтезом. К фотоавтотрофам относится подавляющее большинство растений и некоторые бактерии (например, циано- бактерии). В целом фотосинтез не слишком продуктивный процесс, вследствие чего большинство растений вынуждено вести прикрепленный образ жизни. Хемоавтотрофы извлекают энергию для синтеза органических соединений из неорганических соединений. Этот процесс называется хемосинтезом. Типичными хемоавтотрофами являются некоторые бактерии, в том числе серобак­терии и железобактерии.

Остальные организмы - животные, грибы и подавляющее большинство бактерий - относятся к гетеротрофам.

Дыханием называют процесс расщепления органических веществ до более простых, при кото­ром выделяется энергия, необходимая для поддержания жизнедеятельности организмов.

Различают аэробное дыхание, требующее кислорода, и анаэробное, протекающее без участия кислорода. Большинство организмов является аэробами, хотя среди бактерий, грибов и животных встречаются и анаэробы. При кислородном дыхании сложные органические вещества могут рас­щепляться до воды и углекислого газа.

Под выделением обычно понимают выведение из организма конечных продуктов метаболизма и избытка различных веществ (воды, солей и др.), поступивших с пищей или образовавшихся в нем. Особенно интенсивно процессы выделения протекают у животных, тогда как растения чрезвычайно экономны.

Благодаря обмену веществ и энергии обеспечивается взаимосвязь организма с окружающей средой и поддерживается гомеостаз.

Гомеостаз - это способность биологических систем противостоять изменениям и поддержи­вать относительное постоянство химического состава, строения и свойств, а также обеспечивать постоянство функционирования в изменяющихся условиях окружающей среды. Приспособление же к изменяющимся условиям среды называется адаптацией.

Раздражимость - это универсальное свойство живого реагировать на внешние и внутренние воздействия, которое лежит в основе приспособления организма к условиям окружающей среды и их выживания. Реакция растений на изменения внешних условий заключается, например, в по­вороте листовых пластинок к свету, а у большинства животных она имеет более сложные формы, имеющие рефлекторный характер.

Движение - неотъемлемое свойство биологических систем. Оно проявляется не только в виде перемещения тел и их частей в пространстве, например, в ответ на раздражение, но и в процессе роста и развития.

Новые организмы, появляющиеся в результате репродукции, получают от родителей не го­товые признаки, а определенные генетические программы, возможность развития тех или иных признаков. Эта наследственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражается, как правило, в количественных и качественных измене­ниях организма. Количественные изменения организма называются ростом. Они проявляются, например, в виде увеличения массы и линейных размеров организма, что основано на воспроиз­ведении молекул, клеток и других биологических структур.

Развитие организма - это появление качественных различий в структуре, усложнение функ­ций и т. д., что базируется на дифференцировании клеток.

Рост организмов может продолжаться всю жизнь или заканчиваться на каком-то определен­ном ее этапе. В первом случае говорят о неограниченном, или открытом росте. Он характерен для растений и грибов. Во втором случае мы имеем дело с ограниченным, или закрытым ростом, присущим животным и бактериям.

Продолжительность существования отдельной клетки, организма, вида и других биологи­ческих систем ограничена во времени в основном из-за воздействия факторов окружающей среды, поэтому требуется постоянное воспроизведение этих систем. В основе воспроизведения клеток и организмов лежит процесс самоудвоения молекул ДНК. Размножение организмов обеспечивает существование вида, а размножение всех видов, населяющих Землю, обеспечивает существование биосферы.

Наследственностью называют передачу признаков родительских форм в ряду поколений.

Однако, если бы при воспроизведении признаки сохранялись, приспособление к меняющимся условиям окружающей среды было бы невозможным. В связи с этим появилось противоположное наследственности свойство - изменчивость.

Изменчивость - это возможность приобретения в течение жизни новых признаков и свойств, которое обеспечивает эволюцию и выживание наиболее приспособленных видов.

Эволюция - это необратимый процесс исторического развития живого.

Она базируется на прогрессивном размножении, наследственной изменчивости, борьбе за существование и естественном отборе. Действие этих факторов привело к огромному разно­образию форм жизни, приспособленных к различным условиям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняю­щихся многоклеточных вплоть до человека.

Механизмы стабилизации живых систем

В клетке в течение всей ее жизни поддерживаются специфические физико-химические условия, отличные от условий окружающей среды. Способность биологических систем относительно противостоять изменениям и сохранять динамически относительное постоянство состава и свойств называется гомеостазом . Явление гомеостаза наблюдается на всех уровнях биологической организации. Способность биологических систем автоматически устанавливать и поддерживать на постоянном уровне те или иные биологические показатели называется саморегуляцией. При саморегуляции управляющие факторы не воздействуют на систему извне, а формируются в ней самостоятельно. Отклонение какого-либо жизненного фактора от гомеостаза служит толчком к мобилизации механизмов, восстанавливающих его. Например, повышение температуры тела в жару усиливает потоотделение, и температура тела снижается до нормы. Разнообразны проявления и механизмы саморегуляции надорганизменных систем – популяций и биоценозов. На этом уровне поддерживается стабильность структуры популяций, их численность, регулируется динамика всех компонентов экосистем в изменяющихся условиях среды. Сама биосфера является примером поддержания гомеостатического состояния и проявления саморегуляции живых систем. Всем организмам присуще свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.

Размножение у живых существ можно свести к двум формам: бесполому и половому. Древнейшая форма размножения – бесполое . Оно распространено у одноклеточных организмов, но может быть свойственно и многоклеточным грибам, растениям и животным (у высокоорганизованных животных встречается редко). Наиболее простая форма бесполого размножения характерна для вирусов. Их репродуктивный процесс связан со способностью к самоудвоению молекул нуклеиновых кислот. Применительно к другим организмам, размножающимся бесполым путём, различают размножение спорообразованием и вегетативное размножение . Размножение спорообразованием связано с образованием специализированных клеток – спор, которые содержат ядро и цитоплазму, покрыты плотной оболочкой и способны к длительному существованию в неблагоприятных условиях, дающих начало дочерним особям. Такое размножение характерно для бактерий, водорослей, грибов, мхов, папоротников. Вегетативное размножение – образование новой особи из части родительской. Происходит путем отделения от материнского организма части и превращения ее в дочерний организм. Свойственен многоклеточным организмам. Наиболее разнообразны формы вегетативного размножения у растений – черенки, луковицы, почки и т. д. У животных вегетативное размножение происходит либо путем деления, либо почкованием, когда на материнском организме образуется вырост – почка, из которой развивается новая особь. Почки могут отделяться от родительской особи или остаются соединенными с ней, в результате чего возникает колония (как у коралловых полипов). Может происходить фрагментация тела многоклеточного животного на части, после чего каждая часть развивается в новое животное. Такое размножение характерно для губок, гидр, морских звёзд и некоторых других организмов.

В половом размножении участвуют две родительские особи, внося по одной половой клетке – гамете. Каждая гамета несет половинный набор хромосом. В результате слияния двух гамет образуется зигота, из которой развивается новый организм. Зигота получает наследственные признаки обоих родителей. Наряду с раздельно полыми формами существуют группы животных и растений, имеющие и мужские, и женские половые органы в одном организме – гермафродиты (самоопыляющиеся растения: пшеница, ячмень и др.).

Задача размножения – передача последующим поколениям наследственной информации. Организм проходит все стадии индивидуального развития – онтогенез: растет, развивается, размножается, стареет, умирает. Изменение внешних условий может ускорить или затормозить развитие организма. Ограниченность индивидуальной жизни организмов – одно из необходимых условий для эволюции жизни на планете.

Надорганизменные системы (популяции, биоценозы, биосфера в целом) также способны воспроизводить самих себя, развиваться и изменяться с течением времени.

Действие принципа Ле Шателье в биосфере

Принцип Ле Шателье эмпирически был выведен для химического равновесия: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия уменьшается. Рассмотрим обратимую химическую реакцию, когда прямой процесс стимулирует обратный процесс.

2H 2 + O 2 2H 2 O + Q

Данная реакция протекает с выделением тепла. Можно оценить влияние разных факторов на состояние динамического равновесия (когда скорости протекания прямой и обратной реакций одинаковы). Если в предложенной системе понижать температуру, то согласно принципу Ле Шателье равновесие будет сдвинуто в сторону продуктов реакции, поскольку реакция экзотермическая. Если увеличивать температуру – то в сторону исходных веществ. При увеличении давления равновесие будет сдвинуто в направлении уменьшения давления в системе, т.е. в сторону продуктов реакции.

Этот закон в обобщённом виде заимствовала экология: внешнее воздействие, выводящее систему из равновесия, стимулирует в ней процессы, стремящиеся ослабить результаты этого взаимодействия.

В биосфере этот закон реализуется в виде способности к авторегуляции и поддержанию относительного постоянства важных параметров организма или сообщества организмов (гомеостаза). Осуществление этого принципа основано на глобальной биотической регуляции окружающей среды. В течение всего времени существования биосфера подвергалась внезапным внешним возмущениям: падению метеоритов, вулканическим извержениям и прочим природным катаклизмам. Однако за счёт деятельности живого вещества после таких возмущений обеспечивался возврат к первоначальному равновесному состоянию.

Ещё В.И. Вернадский отмечал огромную роль биоты в стабилизации состояния окружающей среды, поскольку концентрация всех важных для живых организмов элементов регулируется биологическими процессами. Биота сформировала гигантские отложения горных пород, кислородную атмосферу Земли, почву. Наиболее полный контроль биота осуществляет за биогенными элементами, контролируя их круговорот. Благодаря этому регулируется состояние окружающей среды и с высочайшей точностью обеспечиваются оптимальные условия для жизни. За миллиарды лет существования жизни не происходило таких нарушений окружающей среды, которые привели бы к разрушению биосферы в целом. Биота не может повлиять на поток солнечной радиации или интенсивность приливов и отливов. Однако путём направленного изменения концентрации биогенных элементов в окружающей среде в соответствии с принципом Ле Шателье она может компенсировать последствия катастрофических процессов. Избыток углекислого газа во внешней среде, например, может быть переведён биотой в малоактивные органические формы, а недостаток – пополнен за счёт разложения органических веществ, содержащихся в гумусе и торфе.

Нарушение структуры биоты в ходе хозяйственной деятельности может нарушить скоррелированное взаимодействие биологических видов в природе по поддержанию круговоротов веществ и привести к разрушению биосферы.

Расходование воды предприятиями различных групп характеризуется значительной неравномерностью. Для оценки объёмов промышленного водопотребления используют понятие «водоёмкость производства», под которой понимают объём воды (м 3), необходимый для производства 1 т продукции. В табл. 4 приведена водоёмкость различных видов производств.

Наибольшим водопотреблением в промышленности отличается энергетика, химическая, нефтехимическая, целлюлозно-бумажная отрасли, чёрная и цветная металлургия. ТЭС мощностью 300 МВт потребляет 120 м 3 воды в секунду или это 300 млн м 3 /год. Особенно быстро водопотребление в промышленности выросло в XX столетии, так как начали развиваться чрезвычайно водоёмкие отрасли производства, такие как органический синтез и нефтехимия. В сельском хозяйстве высокое водопотребление связано в основном с орошаемым земледелием. Чтобы вырастить 1 т пшеницы за вегетативный период требуется 1500 м 3 , 1 т риса – 8000 м 3 , 1 т хлопка – 5000 м 3 . В условиях быстрых темпов роста населения планеты орошению отводится всё большая роль в повышении эффективности земледелия как основного источника обеспечения людей продуктами питания.

Особое место в использовании водных ресурсов занимает коммунальное хозяйство: для хозяйственно-питьевых и коммунально-бытовых целей. Для питья человек расходует в сутки 2,0–2,5 л. По СНиП в России норматив расхода воды в сутки на одного человека составляет 250 л, для сравнения в других развитых странах – 150 –200 л. В разных странах и разных городах расход воды разный, л/(сут · чел):

Чрезмерное выкачивание воды в связи с увеличением её потребления привело к понижению уровня грунтовых вод на всех континентах . В Китае и Индии, двух крупных по численности населения странах мира, запасы продовольствия зависят от орошаемого земледелия. В Индии отбор воды из водоносных горизонтов в 2 с лишним раза превышает её накопление, поэтому в Индии почти повсеместно уровни водоносных грунтов с пресной водой снижаются на 1–3 м ежегодно. На острове Майорка (у побережья Испании) в настоящее время вообще нет пресных вод, потребности жителей острова обеспечивают три опреснителя. Остров состоит из скальных пород, считается, что раньше он был частью континента. Запасы пресной воды на Майорке после отделения её от Пиренейского полуострова были очень велики. Для того чтобы обрабатывать болотистую местность жители острова в прошлые столетия выкачивали воду с помощью ветряных установок. Оказалось, что этой водой были всего лишь заполнены пустоты в скальных породах.

Потребление воды ежегодно увеличивается, человек использует намного больше её запасов, поэтому в недалёком “будущем” во многих странах может появиться проблема нехватки воды. Дефицит пресной воды уже ощущается в Нидерландах, Бельгии, Люксембурге, Венгрии. Дистиллированную воду используют в Кувейте, Алжире, Ливии, мощные опреснители стоят в Калифорнии и Аклахоме. По данным Всемирной организации здравоохранения от нехватки воды страдает 1,2 млрд человек. Водообеспеченность населения у нас в стране одна из самых высоких в мире, поэтому пресная вода расходуется крайне неэкономно. А трудности с обеспечением населения качественной питьевой водой уже есть. Возможно когда-то мы будем получать пресную воду из морской, но нужно сказать, что методы опреснения дороги и сложны.

Учёные считают, что на Земле нет кристально чистой воды, и вся пресная вода уже прошла техносферу , поэтому она меняет свой качественный состав. Основной причиной современной деградации природных вод земли является антропогенное загрязнение. Главные источники его:

Сточные воды промышленных предприятий;

Сточные воды коммунального хозяйства городов и других населённых пунктов;

Стоки систем орошения, поверхностные стоки с полей и других сельскохозяйственных объектов;

Атмосферные выпадения загрязнителей на поверхность водоёмов и водосборных бассейнов.

Антропогенное загрязнение гидросферы в настоящее время приобрело глобальный характер и существенно уменьшило доступные эксплуатационные ресурсы пресной воды на планете. Общий объём промышленных, сельскохозяйственных и коммунально-бытовых стоков составляет ≈ 1300 км 3 . Общая масса загрязнителей гидросферы ≈ 15 млрд т в год.

Лучшие статьи по теме